All courses, arranged by program, are listed in the catalog. If you cannot locate a specific course, try our advanced search link. Current class schedules, with posted days and times, may be found on the Registrar's Office website or by logging directly into SiS.


Professional Experience (Formerly 81.500)

Description

3 Credits will be given to individuals who present evidence of having at least one full year of current experience in an academic, hospital, or industrial laboratory setting, or in secondary school science teaching

Bioinformatics

Description

Lectures cover the biological and computational basis of approaches to sequence alignment, gene detection, protein structure prediction, phylogenetic inference, analysis of microarray gene expression data, gene mapping, comparative genomics, genome evolution and genome maps. A term paper, seminar or poster presentation may be required.

Prerequisites

Pre-req: BIOL.2350 Genetics, and Co-req: BIOL.5070 Bioinformatics Lab.

Environmental Microbiology Laboratory (Formerly 81.506)

Description

There is currently no description available for this course.

Bioinformatics Lab

Description

Computer-based analysis exercises and independent projects designed to showcase the capabilities and limitations of available computational tools used in genome research. Results of comparisons and evaluation of available methods will be summarized in lab reports.

Prerequisites

Co-req: BIOL.5050 Bioinformatics.

Cell Biology for Teachers (Formerly 81.508)

Description

This online course will examine the structure and function of cells and the regulation of cellular processes characteristics of living organisms. Students will explore the complexity of the eukaryotic cell and gain an understanding of the mechanisms of cellular control and regulation. Course activities will make connections to state frameworks and national standards, and lead to the development of grade-appropriate curriculum materials for use in the elementary and middle school classroom. Class activities will include discussions, quizzes, lesson plans, web reviews, current events, and a final project.

Photobiology (Formerly 81.509)

Description

Biological process involving light in plants and animals. Topics include mechanisms of light absorption, energy transduction, light reactions in photosynthesis, functions of color in flowering plants, visual systems and structural and pigment coloration in animals, pigmentation in animals affecting camouflage and reproductive strategies. In addition, the genetics involved in responses to light such as photoperiods, cicardian rhythms, and seasonal cycles will be covered.

Prerequisites

Pre-Req: BIOL 4190 or 519 Biochemistry.

Invertebrate Zoology II (Formerly 81.513)

Description

An in depth exploration of the deutorostome phyla with a focus on anatomy, ecology and evolution of the lophophorates, Echinodermata, Chaetognatha, Hemichordata and Chordata. Includes readings from the primary literature.

Prerequisites

Co-Req: 81.515 Invertebrate Zoology Lab II

Invertebrate Zoology Lab II (Formerly 81.515)

Description

The laboratory study of live and preserved specimens of invertebrate animals with a focus on anatomy and functional morphology.

Prerequisites

Co-Req: 81.513 Invertebrate Zoology II

Climate Change: Science, Communication, and Solutions (Formerly 81.516)

Description

Climate change offers one of the greatest challenges yet faced by society and scientists. The scientific consensus is clear that climate change is occurring, its pace is accelerating, its impacts on human society will be largely negative, and it is largely caused by anthropogenic greenhouse gas emissions. Yet, despite strong scientific evidence for the enormous challenges that society may face, scientists' attempts to disseminate that evidence beyond their peers have not yet been successful. Indeed in today's media world of blogs, YouTube video clips, and sound-bites, confusion over the scientific reality of climate change frequently dominates the discourse in classrooms and communities. This course will provide students with the tools and knowledge that they need to develop their own well-informed view of climate change. Because climate change is both impacted by humans and will increasingly impact society, this course takes a cross-disciplinary approach, integrating science, policy solutions, and media literacy as they relate to climate change.

Vertebrate Animals in Biological Research (Formerly 81.517)

Description

Vertebrate Animals in Biological Research: History, Protocols, Regulations and Techniques is a lecture, discussion, and techniques based course to cover the principles of vertebrate animal research in biology. This course covers topics ranging from the history of animal research, ethics, regulations, institutional compliance, experimental design, research techniques, disease models, and animal welfare during research. The course will involve literature review and discussions regarding all topics being covered as well as the creation of an IACUC protocol. The protocol will then be reviewed in a mock IACUC meeting. There will also be hands on portions involving research techniques using training analogues and familiarization with animal research tools.

Biochemistry I (Formerly 81.519)

Description

Primarily for M.S. students in biological sciences. Lecture and text assignments on the subjects of protein, carbohydrate, lipid, enzyme and membrane biochemistry will be supplemented with research journal readings.

Biochemistry II (Formerly 81.520)

Description

This course will focus on protein dynamics where students will gain facility with thermodynamics of protein folding/misfolding, catalysis, kinetics and binding equilibria as they apply to proteins and other molecules in biological systems. The central theme of this course is that living systems can be understood in terms of the fundamental principles defining the structure and energetics of biological molecules. Attention will be given to quantitative aspects of enzyme kinetics and molecular binding. Examples of how these principles apply to the understanding and treatment of human disease will be discussed.

Prerequisites

Pre-req: BIOL 5190 Biochemistry I or BIOL 4190 Biochemistry

Biochemistry Techniques (Formerly 81.521)

Description

Biochemistry Required of M.S. students in them Biotechnology Option. Emphasis on common techniques and instrumentation employed in modern research laboratories.

Prerequisites

Pre or Co-req: BIOL 4190 Biochemistry, or BIOL 5190 Biochemistry I.

Biology of Global Change (Formerly 81.523)

Description

There is currently no description available for this course.

Evolutionary Biology (Formerly 81.526)

Description

Lectures deal with the patterns and processes of biological evolution. Covers the history of evolutionary thought, the evidence for evolution, the generation and maintenance of population-level variation, natural selection, adaptation, sexual selection, speciation, phylogenetics, molecular evolution, the fossil record and extinctions. In addition to lecture and textbook material, the course surveys classic and contemporary primary literature from evolutionary biology. A written paper and/or seminar presentation will be required.

Molecular Biotechnology: Recombinant Protein Production (Formerly 81.528)

Description

Proteins are major targets of Pharmaceuticals, and are themselves increasingly used as therapeuticals. However both basic research and the pharmaceutical industry depends on availability of purified proteins that are often difficult to isolate from native sources. In this lecture course, students will learn basic and advanced theoretical background in expression and purification of recombinant proteins. It will cover a variety of expression systems, including prokaryotic and eukaryotic cells. The course will also address traditional and new methods in recombinant protein purification. Furthermore, students will be introduced to some downstream applications such as crystallization screens and biochemical/biophysical studies. Student will choose a term project for oral and written presentation.

Recombinant Protein Production Techniques (Formerly 81.429 & 81.529)

Description

This course introduces students to the principles and practice of recombinant protein expression and purification's. Proteins are major targets of pharmaceuticals, and are themselves increasingly used as therapeuticals. However both basic research and pharmaceutical industry depends on availability of purified proteins that are often difficult to isolate from native sources. This course will provide both didactic and laboratory instruction. It is comprised of a series of lecture and laboratory exercises, with an emphasis on practical techniques and hands-on experience of recombinant protein purification. The course will cover a variety of expression systems, including prokaryotic and eukaryotic cells, and address traditional and new methods in protein purification.

Genomics (Formerly 81.532)

Description

This course surveys the field of genomics, examining current technologies and their biological applications. Lectures cover genome organization, genome sequencing and annotation, functional genomics, evolutionary genomics, transcriptomics, proteomics and the role of bioinformatics in organizing and interpreting genomic data. Students will be expected to submit written papers and to make oral presentations.

Prerequisites

Co-req: 81.534 Genomics Laboratory.

Genomics Laboratory (Formerly 81.534)

Description

A series of molecular laboratory and computer-based bioinformatics exercises providing practical experience in the collection and analysis of genomic-level data.

Prerequisites

Co-req: 81.532 Genomics.

Biology and Evolution of Arthropoda (Formerly 81.537)

Description

A detailed examination of phylum Arthropoda from developmental, ecological, genetic, morphological and paleontological perspectives. Specific topics include arthropod origins and relationships to proto-arthropods, the evolution of segmentation, and current perspectives on relationships within the phylum.

Prerequisites

Pre-req: BIOL 3060 Invertebrate Zoology; BIOL 3080L Invertebrate Zoology Lab; BIOL 4260 Evolutionary Biology and Co- req: BIOL 5390L Biology and Evolution of Arthropoda Lab.

Biology and Evolution of Arthropoda (Formerly 81.539)

Description

An exploration of protoarthropod and arthropod diversity using live and preserved specimens of the major taxa including Tardigrada, Onychophora, Chelicerata, Crustacea, Myriapoda and Hexapoda. Students will learn to collect, dissect, identify, handle and care for live specimens.

Prerequisites

Pre-req: BIOL 3060 Invertebrate Zoology; BIOL 3080L Invertebrate Zoology Lab, BIOL 4260 Evolutionary Biology and Co-req: BIOL 5370 Biology and Evolution of Arthropoda.

Advances in Plant Biology (Formerly 81.540)

Description

Topics covered are siilar to those considered in 81.440. However, students are required to complete a more in-depth review of a current research topic in plant biology and will conduct additional reading and writing assignments.

Prerequisites

Pre-Req: BIOL 4190 Biochemistry or BIOL 5190 Biochemistry I, and BIOL 3350 Principles of Genetics.

Topics in Cell Biology (Formerly 81.541)

Description

Structure and function of the cell: a) cellular membranes, b) transport mechanisms, c) motility, d) excitable cells, and e) energy transduction mechanisms. May be repeated for credit when content varies.

Cell Biology (Formerly 81.542)

Description

Ultrastructure and biochemistry of eukaryotic cells; cell membranes and organelles; energy capture and transduction; histochemical and biochemical studies of organelles at the optical and electron microscopic level; cytogenetics; brief discussion of prokaryotic cells. A substantial library investigation is required.

Evolution in Context for Teachers (Formerly 81.547)

Description

This course empowers life science teachers of all levels with the skills and knowledge to more effectively foster student understanding of evolution by natural selection. By exploring evolution in multiple contexts, the Darwinian framework for how life evolved (and continues to evolve) are presented in an interactive and engaging manner. Teachers learn to use virtual resources to enhance their students learning while digging deep into some of the most profound and interesting science conducted in the last 100 years. Evolution in context makes the science of evolution come alive in a real and relevant manner. From the historical and scientific to the environmental and political, Teachers will learn about evolution in ways they never imagined.

Quantitative Physiology (Formerly 81.552)

Description

There is currently no description available for this course.

Metazoan Parasitology (Formerly 81.557)

Description

An introduction to the diversity of metazoans (animals) that parasitize humans, livestock, other animals (both vertebrate and invertebrate), and plants. Lectures emphasize the morphology, form and function, physiology, systematics, evolution, lifecycles and pathogenesis of several major parasitic groups.

Prerequisites

Co-req: BIOL.5590L Metazoan Parasitology Laboratory.

Metazoan Parasitology Laboratory (Formerly 81.559)

Description

The purpose of the laboratory is to provide students an opportunity to identify and work with a variety of parasites that we discuss in lecture. We will work with preserved specimens, slide material, necropsies, and live specimens. Students will learn how to identify parasites and appreciate where they live in the vertebrate body.

Prerequisites

Co-req: BIOL.5570 Metazoan Parasitology.

Stem Cell Biology (Formerly 81.560)

Description

The molecular and genetic characteristics of stem cells and their developmental potential will be explored. Lectures and readings will cover the development of embryonic, fetal and adult stem cells, and will examine their use in treating human disorders receiving widesread attention, including neurodegenerative diseases, heart disease, spinal cord injury and leukemia. The ethical, legal and social implications of stem cell research will also be discussed. Additional library investigation and a term paper or seminar will be required.

Electron Microscopy (Formerly 81.561)

Description

There is currently no description available for this course.

Cardiovascular Physiology (Formerly 81.562)

Description

This course will focus on human cardiovascular physiology in normal and diseased states. The objective of Cardiovascular Physiology is to reinforce the concept that that the cardiovascular system can be understood in terms fundamental biophysical and cellular physiological principles. Quantitative aspects will be reinforced with problem sets in the accompanying lab course 81.563. Key concepts in the course will be placed in a medical context showing the underlying physiological concepts that lead to disease states such as: altered blood pressure heart failure, valvular disease and arrhythmias.

Prerequisites

Co-req: BIOL.5630L Cardiovascular Physiology Lab.

Cardiovascular Physiology Lab (Formerly 81.563)

Description

Cardiovascular Physiology Lab is designed to supplement Cardiovascular Physiology 81.562. The objective of the course is to teach cardiovascular system function using problems sets as well as clinical and pathophysiological examples.

Prerequisites

Co-req: BIOL.5620 Cardiovascular Physiology.

Molecular Biology (Formerly 81.567)

Description

A study of the principles and specialized techniques of cloning, purifying, and manipulating recombinant DNA molecules.

Prerequisites

Pre-Req: BIOL 4190 or 519 Biochemistry.

Molecular Techniques (Formerly 81.569)

Description

Laboratory experiments and independent projects designed to illustrate current techniques and instrumentation used in genetic engineering. Included are restriction mapping, cloning, plasmid purification, blot hybridization, and DNA sequencing. Students are introduced to computer software utilized for DNA sequence analysis and manipulation.

Prerequisites

Pre-req: BIOL 5190 Biochemistry I or BIOL 4190 Biochemistry, and BIOL 5210L Biochemistry Techniques or BIOL 4210L Biochemistry Techniques.

Virology (Formerly 81.572)

Description

A study of bacterial, animal, and plant viruses, including viral structure, modes of replication, biochemistry of the infected cell, genetic properties, and viral oncogenesis. Emphasis is on viruscell interaction at the molecular level.

Cell Culture (Formerly 81.576)

Description

A series of lecture and laboratory exercises that will focus on the in vitro culture and analysis of multiple cell type commonly used in biomedical research laboratories. The lecture component will review methodologies used to establish immortalized cell lines, medium component for specific cell types, and techniques for genetically manipulating and analyzing cell lines. The laboratory exercises will emphasize the mastery of sterile techniques used to grow both established cell line and primary cultures, and molecular tools used for introducing recombinant genes and for analyzing cell growth and differentiation.

Prerequisites

Pre-Reqs: BIOL 5420 or BIOL 5600 or BIOL 5670, and BIOL 4210L aor BIOL 5210L Biochemistry Techniques.

Developmental Biology (Formerly 81.580)

Description

An in depth discussion of contemporary topics related to reproduction and embryogenesis. Lecture material is supplemented with reading assignments in a recently published textbook and current literature taken from research journals. Emphasis is on the dynamic nature of the interactions between developing cells as well as the events that occur during fertilization, implantation and the development of the mammalian embryo which lead to birth. Students examine how studies with nonmammalian model systems such as Drosophila and Xenopus have enhanced our knowledge of mammalian development. Among the topics discussed are the role of adhesion molecules, HOX genes, apoptosis, hypornethylation of genes, axis formation and hormonal control of differentiation. Class participation is expected. Critical scientific reading and thinking is encouraged by having students present to the class published original research papers on topics of current interest in the field of developmental biology.

Developmental Biology Lab

Description

This course provides hands on experience in current methods and model systems used to investigate questions in developmental biology. Students will be exposed to a wide variety of embryonic systems, including intensively studied genetic model systems (e.g. C. elegans, zebrafish, mouse) and others with well-established experimental attributes (e.g. chick, sea urchin). Analytical and experimental techniques used to explore invertebrate and vertebrate development include embryological manipulation, molecular and cell biology approaches. Conceptual topics include cell specification and differentiation, pattern formation, morphogenesis, and comparative embryology. This lab supplements the Developmental Biology lecture (BIOL.5800).

Prerequisites

Co-req: BIOL.5800 Developmental Biology.

Cancer Biology (Formerly 81.582)

Description

A study of the genes and proteins implicated in the cause of human cancer and discussion of the complex behaviors of cancer cells that differ from their normal counterparts in human tissue. Lectures and original research papers will be used.

Comparative Vertebrate Embryology

Description

A comparative study of vertebrate embryological development focusing on the morphological development (e.g., Differentiation of tissues, organs, and systems) of vertebrates. Evolutionary relationships of the classes of vertebrates will be investigated through their anatomy. This course builds on concepts taught in Developmental Biology, providing more detailed analysis of tissue development in a comparative context.

Prerequisites

Pre-req: BIOL.5800 Developmental Biology.

Structural Biology (Formerly 81.588)

Description

Structural basis of the molecular biology of cells and the regulation of cellular processes will be discussed. This course will cover the fundamental knowledge about protein, nucleic acid and membrane structure in relation to central systems in biology. Topics to be discussed include structural enzymology, macromolecular assemblies for replication, transcription, translation, membrane proteins, signal transduction, cell motility and transport, cell-cell interactions, the immune system, and virus structure. Students will choose a recently published primary research article for an oral presentation, and will lead a class discussion on that topic.

Practical Protein Crystallography (Formerly 81.589 & 81.489)

Description

This course provides grounding in the principles and practice of protein x-ray crystallography. The course will be unique in format and provide both didactic and laboratory instruction. It is comprised of a series of lecture and laboratory exercises, with an emphasis on practical techniques and hands-on experience of modern protein crystallography. The course will cover the fundamental knowledge about x-ray physics, instrumentation and geometrical diffraction, protein crystallization, macromolecular data collection and processing, phase estimation and improvement, model building and refinement, and model assessment. Student will also be given a recently published structural paper for writhing a report on the subject.

Prerequisites

Pre-Req: 81.521 Biochemistry Techniques

Human Neurobiology (Formerly 81.490 & 81.590)

Description

A study of cellular and systems neurobiology with a focus on how these relate to human health and disease. Particular attention will be given to illustrating functional neuroanatomy and neurophysiology of the human CNS using investigations into the pathogenic mechanisms of a variety of human neurodegenerative diseases including epilepsy, Alzheimer's Disease, Huntington's Disease, ALS among others. Note: Graduate level enrollees will be responsible for additional reading and writing.

Immunology (Formerly 81.493 & 81.593)

Description

A study of the nature of the immune response with sections on antibody structure, function and production; antigen-antibody reactions; immunogenetics; and immune regulation, protection and injury.

Immunology Laboratory (Formerly 81.495 & 81.595)

Description

A series of basic laboratory exercises dealing with the preparation, isolation and characterization of antigens, antibodies and effector cells.

Graduate Seminar Biology (Formerly 81.601)

Description

Assists students in developing effective writing and speaking skills required for preparation of research papers, grants and professional presentations. Disclosure and conflict of interest, publishing ethics, publishing censorship/fraud, and electronic collaborations are also reviewed through outside readings.

Graduate Colloquium Biology (Formerly 81.603)

Description

Presentations of current topics by visiting scientists and staff. Required of all graduate students.

Professional Communication in Science and Technology (Formerly 81.604)

Description

The course instructs students in developing effective writing and speaking skills required for preparation of publishable scientific manuscripts and presentations. The importance of clear, concise writing style and delivery of presentations to both research, scientists and non-scientists is emphasized. Guest speakers discuss commercialization of technology, intellectual property, and electronic literature searches/citation. Experimental design, statistical analyses, research grant preparation, and poster presentations are also reviewed. Outside readings are used to critically evaluate contemporary issues related to disclosure, conflict of interet, publishing ethics, biosecurity, and electronic science collaborations/team research.

Selected Topics in Molecular and Cellular Biology (Formerly 81.666)

Description

Topics will focus on the central dogma of molecular Biology (DNA to RNA to protein) and how they relate to the structure and function of the cell. Course material will be taken directly from the current, primary literature with emphasis on student presentations and discussion. Multidisciplinary groups will select topics of interest to present to the class, and topics will vary by semester depending on student interests. Student groups will be expected to organize presentations into background and discussion sections and will lead class discussions.

Internship Biology (Formerly 81.707)

Description

There is currently no description available for this course.

Graduate Course Review (Formerly 81.708)

Description

Internship or co-op.

Supervised Instruction in Undergraduate Biology Education

Description

Graduate students will assist with the preparation of course materials, teaching and/or grading in selected courses offered by the Department of Biological Sciences. Students will be expected to work well independently, while also working under the supervision of a faculty mentor. Through these activities, the student will learn about materials used, as well as teaching and learning techniques implemented in undergraduate biology education. Required for the MS in Biological Sciences option: Education, Communication, and Outreach.

Special Problems In Biology (Formerly 81.721)

Description

There is currently no description available for this course.

M.S. Project in Biology (Formerly 81.731)

Description

There is currently no description available for this course.

Master's Thesis - Biology (Formerly 81.743)

Description

There is currently no description available for this course.

PhD Dissertation Biochemistry (Formerly 81.753)

Description

There is currently no description available for this course.

PhD Dissertation Biochemistry (Formerly 81.759)

Description

There is currently no description available for this course.

Continued Graduate Research (Formerly 81.769)

Description

There is currently no description available for this course.