All courses, arranged by program, are listed in the catalog. If you cannot locate a specific course, try our advanced search link. Current class schedules, with posted days and times, may be found on the Registrar's Office website or by logging directly into SiS.


Plastics Safety Lecture (Formerly 26.001)

Description

All Plastics Engineering students enrolled in a plastics laboratory course are required to attend a one hour per week safety lecture for safety training.

Prerequisites

Co-Reqs: PLAS 2150 or PLAS 3150 or 26415 or PLAS 4160 or PLAS 5740

Plastics Safety Lecture (Formerly 26.002)

Description

All Plastics Engineering students enrolled in a plastics laboratory course are required to attend a one hour per week safety lecture for safety training. Continuation of 26.001.

Prerequisites

Co-Reqs: PLAS 2160 or PLAS 3160 or PLAS 4150 or PLAS 4160 or PLAS 5720.

Introduction to Plastics Engineering (Formerly 25.107/26.107)

Description

This course is designed to teach basic principles of technical drawing, fundamentals of design, fundamentals of computer aided design (CAD), dimensioning and tolerances. Basic concepts of manufacturing, rapid prototyping and 3D printing are covered. The lecture component covers theoretical information, and the lab component covers hands-on learning, where students learn to use a commercial CAD software.

Polymer Materials I (Formerly 26.201)

Description

This introductory course in plastics materials first evaluates how commercial plastics were developed, characterized and compared throughout the relevant industry. Various ASTM testing protocols are reviewed followed by an initial study of commodity plastic materials, including polyethylene, poly (vinyl chloride), polystyrene, diene rubbers and other selected and relatively high-volume resins. Applicable commercial polymerization methods are introduced along with comparative structure/property relationships. Initial comparisons are drawn as between commodity thermoplastic resins and thermoset compositions. Comparative end-use applications are continuously discussed along with a consideration of selected environmental issues (recyclability).

Prerequisites

Pre-Reqs: CHEM 1210 Chemistry I.

Polymer Materials II (Formerly 26.202)

Description

A critical review of the commercial family of materials known as engineering thermoplastics including an examination of relatively important thermoset polymer systems. Major commercial polymerization reactions are reviewed (e.g. applicable chain growth or step-growth polymerizations) including comparative market performance based upon mechanical, thermal, chemical properties and environmental considerations. Also considered are selective high performance plastic materials suitable for use at elevated temperatures and in other relatively extreme working environments. Recommended Pre-Req: 26.201 Polymer Materials I.

Prerequisites

Pre-Req: CHEM 1210Chemistry I.

Professional Development Seminar (Formerly 26.210)

Description

The Professional Development Seminar is designed to provide students with the necessary structure, resources, and support to successfully secure and engage in their first Plastics Cooperative Education experience. Through a variety of interactive teaching methodologies and assignments, students will participate in a sequence of learning activities including self-assessment, industry research, and the development of co-op learning objectives. Students will prepare to engage in the job search process through resume-writing, strategic interviewing, professional networking and learn professional behavior and presentation skills. The goal of the course is to assist each student in developing a sound plan of action to successfully participate in the cooperative education experience.

Engineering Mechanics (Formerly 26.211)

Description

Equilibrium of structures subjected to forces and moments. Area and mass moments of inertia,. Internal forces, shear and bending moments acting on loaded structures, including cantilevers, beams, trusses, bridges and machine frames. Friction.

Prerequisites

Pre-req: 92.121 Calculus I and PHYS 1410 Physics I.

Dynamics (Formerly 26.212)

Description

This course covers the fundamentals of Newtonian mechanics, including kinematics, motion relative to accelerated reference frames, work and energy, impulse and momentum, 2D and 3D rigid body dynamics. The course pays special attention to applications in plastics engineering including introductory topics in material and energy balance.

Prerequisites

Pre-req: 92.121 Calculus I and PHYS 1410 Physics I.

Plastics Processing Engineering Laboratory I (Formerly 26.215)

Description

A plastics laboratory courses to study plastics properties and processability. This course focuses on physical property testing of plastics. The property tests covered in this lab course include tensile properties, flexural properties, pendulum impact resistance, drop impact resistance, bulk properties, surface properties, and melt flow rate. The effect of temperature on many of these properties is also evaluated.

Prerequisites

Pre-Req or Co-Req: PLAS 2010 Polymer Materials I, Co-Req: PLAS 0010 Plastics Safety Lecture.

Plastics Process Engineering Laboratory II (Formerly 26.216)

Description

This laboratory introduces students to the processes of plastics single screw extrusion, plastics injection molding, blow molding and sheet thermoforming. Experiments are designed so that the student will understand the theory of polymer conversion techniques by the interaction between process variables and materials characteristics.

Prerequisites

Co-Req: PLAS.0020 Plastics Safety Lecture.

Introduction to Design (Formerly 26.218)

Description

This course is designed to teach basic principles of technical drawing, fundamentals of design, dimensioning and tolerances. Basic concepts of manufacturing and rapid prototyping are covered. The lecture component covers theoretical information, and the lab component covers hands-on learning, where students learn to use a commercial CAD software. Meets Core Curriculum Essential Learning Outcome for Applied & Integrative Learning (AIL).

Thermodynamics (Formerly 26.247)

Description

The principles of thermodynamics, a study of the first and second laws of thermodynamics with applications to classic power generation and refrigeration systems. The concepts of entropy, reversibility, irreversibility and availability. Meets Core Curriculum Essential Learning Outcome for Quantitative Literacy (QL).

Prerequisites

Pre-Req: MATH 1320 Calculus II and PHYS 1410 Physics I.

Methods of Experimental Analysis (Formerly 26.306)

Description

Basic concepts dealing with the interpretation of experimental engineering results. Deterministic vs. stochastic processes. Elementary probability theory and common distributions. Graphical analysis and mathematical modeling. Statistical parameters and their applications to quality control, and tests of significance. Design of experiments (DOE) for process development and optimization. Meets Core Curriculum Essential Learning Outcome for Quantitative Literacy (QL).

Prerequisites

Pre-Req: MATH 1320 Calculus II.

Co-op Assessment I (Formerly 26.310)

Description

The primary goal of this seminar is to assist students in the overall assessment of their overall cooperative education experience. Through facilitated small group discussion, individual consultation and hands on practice, students will have an opportunity to identify and articulate their technical and professional skills, and explore how these skills and their co-op employment might be translated and leveraged into future work environments and their academic program at UML.

Prerequisites

Pre/Co-req: PLAS 2100 Professional Development Seminar; and Pre/Co-Req:PLAS 3CE Cooperative Education.PLAS 2100&PLAS 3CE Pre/Co-Req

Fluid Flow (Formerly 26.314)

Description

Statics and dynamics of Newtonian and Non-Newtonian fluids. Bernoulli equation, flow in closed conduits, measurement of fluid flow, external flow, rheology of melts, control volume, temperature and entrance effects. Applications of flow equations to plastics processing. Recommended Pre-Reqs: 92.234 Differential Equations or 92.236 Engineering Differential Equations.

Prerequisites

Pre-Req: MATH 1320 Calculus II.

Plastics Process Laboratory III (Formerly 26.315)

Description

This laboratory introduces students to the processes of twin screw extrusion compounding, advanced injection molding and process monitoring, the plastics recycling process, and extrusion rheological measurements for plastics. Experiments are designed so that the student will understand the theory of polymer conversion techniques by the interaction between process variables and material characteristics.

Prerequisites

Pre-Req: PLAS 2150 or PLAS 2160 Plastics Processing Eng Lab I/II, PLAS 2010 or PLAS 2020 Polymeric Materials I/II; Co-Req: PLAS 0010 Plastics Safety Lecture.

Plastics Process Engineering Laboratory IV (Formerly 26.316)

Description

This laboratory introduces students to the processes of blowm film extrusion, sheet extrusion, tubing extrusion with statistical quality control, twin screw compounding of nano-composites and over-molding. Experiments are designed so that the student will understand the theory of polymer conversion techniques by the interaction between process variables and material characteristics.

Prerequisites

Pre-Req: PLAS 2150 or PLAS 2160 Plastics Processing Eng Lab I/II, PLAS 2010 or PLAS 2020 Polymeric Materials I/II; Co-Req: PLAS 0020 Plastics Safety Lecture.

Co-op Assessment I (6 months)

Description

This seminar is designed to support and assist students in the assessment of their 6 month cooperative education experience. Students will reflect of their extended time in a work environment, the impact of their experience on their planning, and how organizational culture, personal interests and values can inform their subsequent decisions for career development. Through facilitated small group discussions, individual consultation and hands on practice, students will have the opportunity to identify and articulate their technical and professional skills.

Prerequisites

Pre-req: PLAS.3CE Co-op Experience and PLAS.2100 Professional Development Seminar, Permission of Instructor following 6 month co-op.

Heat Transfer (Formerly 26.348)

Description

This course covers the theory and application of steady and transient heat conduction, convection, and radiation. Particular emphasis is placed on heat transfer problems in plastics processing and modern engineered systems. Computational methods and analysis of heat exchangers are covered.

Prerequisites

Pre/Co-Req: MATH 2310 Calculus III; MATH 2340 Differential Equations or MATH 2360 Eng Differential Equations.

Mold Engineering (Formerly 26.373)

Description

Course work entails the introduction to the fundamentals of plastics mold and die engineering with the objective to develop an overall appreciation of the mold engineer's job. Emphasis is placed on an integrated approach to mold engineering which includes the interrelationships of polymeric materials, engineering principles, processing, and plastics product design, mold and die design/construction, and design communications. Laboratory consists of the actual design of an old or mold components with emphasis on CAD and computerized Material Database. A semester project is required. Junior status or permission of instructor. (26.314 recommended pre-requisite)

Prerequisites

Pre-Reqs: PLAS 2180 Intro to Design or PLAS.1070 Introduction to Plastics Engineering; Pre-Req or Co-Reqs: PLAS 3480 Heat Transfer. (PLAS.3140 recommended pre-requisite).

Plastics Process Engineering I (Formerly 26.377/577)

Description

The first course in a two semester sequence to study the fundamental principles of polymer processing, i.e., the conversion of the polymeric materials into useful articles. The course will first study the properties of polymers (bulk and rheological and thermal properties) and why they are important to understanding polymer processing. This course will emphasize the fundamental principles of the extrusion process and examine the correlation between elements of the extruder, polymer properties, and processing variables and why they all must be considered when studying and understandng a plastics processing technique.

Prerequisites

Pre-Reqs: PLAS 2010 Polymer Materials I or PLAS 2020 Polymer Materials II. Pre-Req or Co-Req: PLAS 3140 Fluid Flow.

Plastics Process Engineering II (Formerly 26.378)

Description

This course will study the basic extrusion processes of blown film, flat film, tube, pipe, extrusion coating, coextrusion, injection molding, thermoforming, rotational molding and blow molding with emphasis on how polymeric materials, machine components and process variables affect properties of the products produced with each process. Recommended Pre-Req: 26.377 Plastics Process Engineering I.

Prerequisites

Pre-Reqs: PLAS 2010 Polymer Materials I or PLAS 2020 Polymer Materials II.

Polymer Science for Engineers I (Formerly 26.381)

Description

An introduction to polymer science with a focus on making polymers. Topics covered include the chemistry, kinetics, and statistics of step and chain polymerizations and copolymerizations, polymerization processes. Industrially relevant polymers and commercial polymerization processes will be highlighted, with coverage of the health and safety aspects of various approaches to the preparation of various polymers given. Meets Core Curriculum Essential Learning Outcome for Quantitative Literacy (QL).

Prerequisites

Pre-Req: PLAS 2010 Polymer Materials I or PLAS 2020 Polymeric Materials II and CHEM 2040 Intro to Organic & Polymer Chemistry or CHEM 2210 Organic Chemistry I.

Polymer Science for Engineers II (Formerly 26.382)

Description

An introduction to polymer science with a focus on polymer properties and behavior. Topics covered include analytical techniques (chemical, thermal, and microstructural analysis of polymers, measurement of molecular weight distribution, etc.), as well as the underlying physical, rheological and solution properties that make these techniques possible. Recommended Pre-Req: 26.381 Polymer Science for Engineers I

Prerequisites

Pre-Req: PLAS 2010 Polymer Materials I or PLAS 2020 Polymeric Materials II and CHEM 2040 Intro to Organic & Polymer Chemistry or CHEM 2210 Organic Chemistry I.

Polymer Science I Lab (Formerly 26.383)

Description

Synthesis of polymers by step growth, condensation, suspension and free radical emulsion polymerization techniques. Fundamental concepts in polymerization kinetics and mechanism will be covered as well as structure-property considerations and polymerization with functional groups.

Prerequisites

Pre-Req: CHEM 2040 Intro Organic & Polymer Chem or CHEM 2210 Organic Chemistry I; Co-Req: PLAS 3810 Polymer Science for Engineers I.

Polymer Science II Lab (Formerly 26.384)

Description

Polymer characterization techniques including molecular weight distribution by gel permeation chromatography, crystallinity and order by differential scanning calorimetry; polymer morphology and surface properties, and spectroscopic (nuclear magnetic resonance, Raman, infrared) and mechanical (tensile, dynamic mechanical, rheological) techniques will also be covered. Recommended Pre-Reqs: 26.381 Polymer Science for Engineers I and 26.383 Polymer Science I Lab; Co-Req: 26.382 Polymer Science for Engineers II.

Prerequisites

Pre-Reqs: CHEM 2040 Intro to Organic and Polymer Chemistry or CHEM 2210 Organic Chemistry I; Co-Req: PLAS 3820 Polymer Sci for Engineers II.

Co-op Experience (Formerly 26.3CE)

Description

This is a structured educational strategy integrating classroom studies with learning through productive work experiences in a field related to a student's academic or career goals. It provides progressive experiences in integrating theory and practice. Co-op is a partnership among students, educational institutions and employers, with specified responsibilities for each party.

Plastics Engineering Curricular Practical Training (CPT) (Formerly 26.3CO-OP)

Description

Plastics Engineering Curricular Practical Training (CPT)

Mechanical Behavior of Polymers (Formerly 26.403/503)

Description

Topics covered in this course include linear viscoelasticity, creep, stress relaxation, dynamic behavior, hysteresis, stress-strain response phenomena, principles of time-temperature superposition, rubber elasticity, failure and fracture mechanisms for polymers, and the effect of additives on mechanical behavior. Real life design examples are used to demonstrate the topics and concepts as much as possible.

Prerequisites

Pre-Reqs: (ENGN.2050 or PLAS.2110) and PLAS.2150 Plastics Process Engin. Lab I, MATH.2340 Differential Equations or MATH.2360 Engin. Differential Equations.

Process Control (Formerly 26.404)

Description

Basic principles of control systems used with plastics processing equipment. Included are instrumentation, signal conditioning, data acquisition, feedback control, process monitoring, data reduction, and SPC/SQC. Meets Core Curriculum Essential Learning Outcome for Critical Thinking & Problem Solving (CTPS) and Written & Oral Communication (WOC).

Prerequisites

Pre-Req: MATH 2340 Differential Equations or MATH 2360 Eng Differential Equations.

Polymer Structure, Properties and Applications (Formerly 26.406)

Description

The fundamental relationships between molecular structure, properties and end-use applications of plastics materials will be explored in detail. Molecular structural features include chemical composition, molecular size and flexibility, intermolecular order and bonding, and supermolecular structure. Properties include processability, mechanical, acoustic, thermal, electrical, optical and chemical properties, price, and balance of properties. Applications include rigid solids, flexible solids, foams, film and non-plastic applications.

Prerequisites

Pre-Req: 26.202 Polymeric Materials II.

Senior Research Plastics I (Formerly 26.409)

Description

Individual research projects in plastics chemistry, properties, processing, products, and industry organization. Students will review the existing literature, obtain materials and equipment, plan and carry out research programs and submit final reports for publication.

Prerequisites

Co-Req: PLAS 0010 or PLAS 0020 Plastics Safety Lecture.

Coop Assessment II (Formerly 26.410)

Description

This seminar is designed to support and assist students in the continued assessment of their cooperative education experience. Through a deepening of their work in Co-op assessment 1, students well review their overall performance in the cooperative education program, while continuing to demonstrate their technical and professional skills through written work and public presentations to multiple audiences. It is expected that students will clearly define their future academic and career goals, enhance their professional networks, and develop a future plan to support aspirations related to their major.

Prerequisites

Pre-Req or Co-Req: PLAS 2100; Pre-Req: PLAS 3CE or PLAS 4CE.

Capstone Project I (Formerly 26.415)

Description

A two-semester capstone laboratory project course. Student groups design, perform, analyze, report, and defend a research project which incorporates the processing and characterization of plastics materials. Supporting practicums on literature searches, plastics processing, basic plastics testing techniques, and data analysis are included in the course.

Prerequisites

Co-req: PLAS 0010 or PLAS 0020 Plastics Safety Lecture; and Senior Status.

Capstone Project II (Formerly 26.416)

Description

Continuation of 26.415.

Prerequisites

Pre-Req: PLAS 4150 Capstone Project I; and Co-Req: PLAS 0010 or PLAS 0020 Plastics Safety Lecture. Senior Status.

Honors Capstone Project II (Formerly 26.417)

Description

A section of capstone laboratory for honor students only. Honors student groups design, perform, analyze, report and defend a research project which incorporates the processing and characterization of plastics materials. Supporting practicum on literature searches, plastics processing, basic plastics testing techniques, and data analysis are included in the course.

Prerequisites

Co-Req: 26.416 Capstone Project II; Honors only. Senior Status.

Product and Process Design (Formerly 26.418)

Description

Theoretical principles and sound engineering practice involved in the design of new end products made from polymers, applying the total systems approach to the balance between product design, choice of materials, tool design, and process techniques, as they affect competitive choices for commercial success. A semester project is required. Recommended Pre-Reqs: 26.373 Plastics Mold Engineering I and 26.378 Plastics Process Engineering II.

Prerequisites

Pre-req: PLAS.2110 Engineering Mechanics, and PLAS.2180 Introduction to Design or PLAS.1070 introduction to Plastics Engineering. Recommended Pre-reqs: PLAS.3730 and PLAS.3780.

Co-op Assessment 2 (6 months)

Description

This seminar is designed to support and assist students int he assessment of their second cooperative education work experience that was for a 6 month cycle. Students will reflect on their extended time in this second work environment, and how their two different co-op work experiences impacts their subsequent decisions for career development. Students will review their overall performance in the cooperative education program, and demonstrate their technical and professional skills through written work and public presentations to multiple audiences.

Prerequisites

Pre-req: PLAS.3CE Co-op Experience and PLAS.2100 Professional Development Seminar, Permission of Instructor following 6 month co-op.

Nanoscale Trans. Phenomena for Manuf. Nanodevices (Formerly 10/22/26.450)

Description

An interdisciplinary course taught by faculty from the Chemical, Mechanical and Plastics Engineering Departments, who have special knowledge in nanoscale fluid mechanics and heat transfer. The course on nanoscale transport phenomena constitutes a bridge between existing fluid and heat transfer courses in multiple disciplines and emerging nanoscale science and engineering concepts to reflect the forefront of nanomanufacturing. The course is designed to incorporate recent advances in manufacturing polymer based nanodevices. Key issues of the implementation and maintenance costs for fabrication will be addressed. Hands-on laboratory experiments will be performed to complement the lectures with the ultimate goal of designing and building a complete nanodevice at the end of the course. The course will prepare graduates for employment focused on designing and manufacturing nano/microfluidic systems, lab on ship devices, electronic devices, medical devices and other emerging technologies.

Prerequisites

Pre-Req: 26.314 Fluid Flow, 26.348 Heat Transfer, and 26.218 Intro to Design.

Cooperative Education Experience (Formerly 26.4ACE)

Description

This zero credit course is specifically designated for Plastics Engineering students who have successfully completed the Professional Development Seminar, are participating in the professional Co-op program, and have secured a third, full-time co-op employment experience. The co-op is designed to provide students the opportunity to develop and enhance their hands on, technical and professional skills within an industry related to their academic program of study. During the co-op employment experience, students will, in conjunction with their employer, develop and submit written learning goals, participate in a performance evaluation and facilitate an on-site visit by Co-op Coordinator.

Prerequisites

Pre-req: PLAS 2100 Professional Developement Seminar, and PLAS 3CE Cooperative Education Experience I, and PLAS 4CE Cooperative Education Experience II.

Co-op Experience (Formerly 26.4CE)

Description

This zero credit course is specifically designated for Plastics, Chemical, and Mechanical Undergraduate Engineering students who have successfully completed the Professional Development Seminar, are participating in the Professional Co-op program and have completed their first, full-time co-op employment. The co-op is designed to provide students the opportunity to develop and enhance their hands on, technical and professional skills within an Industry related to their academic program of study. During the co-op employment experience, students will, in conjunction with their employer, develop and submit written learning goals, participate in a performance evaluation and facilitate an on-site visit by Co-op Coordinator.

Prerequisites

Pre-req. PLAS 3CE; Pre-req. or Co-req. PLAS 2100