All courses, arranged by program, are listed in the catalog. If you cannot locate a specific course, try the Advanced Search. Current class schedules, with posted days and times, can be found on the NOW/Student Dashboard or by logging in to SiS.
This course provides a hands-on introduction to industrial engineering and the engineering design process. Through assignments and projects, students learn how to: identify a problem, develop alternative solutions, select the best alternative, make critical decisions, and work as a team. Students will be introduced to basic design )CAD) and control issues. Lecture and lab component.
This course is concerned with the introduction to the formulation, solution, interpretation, and implementation of mathematical models in operations research including nonlinear programming, linear programming, integer programming, and network flows.
Pre-Req: MATH.2210 Linear Algebra I.
An introduction to the theory, algorithms, approximations, and applications of stochastic processes. Topics studied include Markov chain and continuous and continuous time Markov process models and applications, renewal processes, Brownian Motion, analytical and numerical approximation methods, Markov decision processes. Application areas include inventory control, reliability, queuing, and decision analysis.
Pre-req: MATH.3860 Probability and Statistics.
This is an introduction to manufacturing processes, including a fundamental review of properties of metals, polymers, ceramics and composites. Processes including metal casting, forming, and shaping,including rolling, forging, extrusion, drawing, sheet metal forming, powder metallurgy, are reviewed. Fundamental machining processes are reviewed and advanced machining processes are introduced. Additive processes and joining processes, for polymers and metals, are introduced.
Pre-req: MECH.2020 Manufacturing Laboratory, and MECH.2960 Materials Science for Engineers.
This course introduces students to the embedded electronics and software used in data acquisition, and process and instrument control in an industrial or manufacturing environment. Students will implement learning through PLC programming.
Pre-req: EECE.3170 Microprocessors Systems Design I, or Permission of Instructor.
this course introduces a variety of concepts in manufacturing automation with the goal of designing and implementing and automated manufacturing system. Technologies covered include: automated flow lines, automated assembly systems, NC and CNC, industrial robot technologies and applications, group technology, computer aided process planning, flexible manufacturing systems, material handling and storage systems, and computer integrated manufacturing (CAD/CAM and CIM).
Pre-req: IENG.3030 Manufacturing Processes, and Co-req: IENG.4010 Automation and Control.
This course accompanies the lecture component IE.4040, Manufacturing Systems Automation. Students will design and implement a manufacturing system, including material handling, storage, and machining, or other related processes. Simulation software will also be utilized.
Co-req: IENG.4040 Manufacturing Systems Automation.
Designing human-machine systems involves the inclusion of humans in the design of products, processes, and systems. The goal of human factors is to reduce human error, increase productivity, and enhance safety and comfort with a specific focus on the interaction between the human and the environment. This is an introductory course that will focus on the cognitive considerations of the human in system design.
This course introduces students to accounting and finance operations and principles, and how they impact engineering and manufacturing activities in both analytical and forward looking planning activities. Topics covered include financial statements, costing, depreciation, time value of money, cash flows, capital budgeting, and capital recovery with the objective of building working financial models for a technical environment.
Pre-req: ECON.2010 Principles of Microeconomics, or ECON.2020 Principles of Macroeconomics, or Permission of Instructor.
Kinetic Projects is a hybrid course designed for a variety of majors to explore the intersections between mechanical engineering and sculpture. In this project-driven class, students will learn principles and practice in both the fields of engineering and art, and put them into practice by creating functioning kinetic objects to be displayed in a public setting. The course will also include guest lectures from practitioners in Art and Engineering. The course also provides an introduction to technical communications, teamwork, data analysis, computer coding, and introduction to CAD prototyping, report-writing and/or oral presentation.
This course provides a hands-on introduction to mechanical engineering and the engineering design process. Through assignments and projects, students learn how to: identify a problem, develop alternative solutions, select the best alternative, make critical decisions, and work as a team. Lecture and lab component.
Curricula Practical Training. "Variable credit course, student chooses appropriate amount of credits when registering."
Students work on engineering design/build/test (DBT) projects under the supervision of a mechanical engineering faculty member. Projects can include student club based DBT projects.
Level: minimum Sophomore standing.
Course emphasis is on introducing the use of computer aided design tools in the engineering problem solving process. Assigned design projects require the use of solid modeling tools. Lecture and lab activities are used to support project requirements, and to provide more in-depth understanding of computer aided engineering design and drawing.
Pre-req: MECH.1070 Introduction to Mechanical Engineering, or IENG.1010 Introduction to Industrial Engineering, or ENGN.1070 Introduction to Engineering I.
This is an introductory course in manufacturing processes covering the basic machine tool practices utilized in the manufacturing of a product. The objective of the course is to develop a broad understanding of manufacturing operations and their relationship to engineering product design. Students manufacture, fabricate and measure the accuracy of a mechanical assembly from design drawings, using lathes, milling machines, drill presses and other conventional processes.
Pre-Req: MECH.1070 Intro to Mechanical Engin or ENGN/EECE.1070.
The first and second laws of thermodynamics are introduced and applied to the analysis of thermodynamic systems in terms of work, heat, energy transformation, and system efficiency. The use of tables, graphs, and equations of state is introduced to obtain various properties of pure substances. The concepts of work, heat and energy, as well as their relationships, are studied. The theory and application of reversible and irreversible thermodynamic process, Carnot cycles, and entropy are studied in relation to the energy analysis of engineering systems. Energy balances and ideal efficiencies of steady flow engineering systems are analyzed.
Pre-req: MATH.1320 Calculus II, and CHEM.1210 Chemistry I, and Co-req or Pre-req: PHYS.2450 Physical Properties of Matter.
Students will study engineering materials, focusing on their properties, processing techniques, and selection in design for modern application. Structure-property-processing relationships and their impact on engineering performance are discussed. Primary material families are discussed, including metals, polymers, ceramics, and hybrids. Experimental and computational characterization, and data analysis methods are covered. Topics include stress, strain, strength, stiffness, thermal expansion, hardness, tensile and bending tests, strain gages, corrosion, microstructure, and sustainability metrics.
Pre-Req: CHEM 1210 Chemistry I; and Mechanical Engineering or Industrial Engineering majors only.
Pre-Req: 22.200 Mechanical Eng Project I.
Students set up and conduct specific experiments designed to study: 1) fundamental ME instrumentation systems; 2) fundamental experimental techniques, 3) basic physical principles of mechanical systems, and 4) signal processing. Experiments are divided into two areas; solid-mechanics and dynamics. Students develop models for use in validating and comparing with experimental results. Written and oral communication techniques are emphasized.
Pre-req: C- or better in ENGN.2060 Strength of Materials, or Spring 2020 grade of "P".
Strength of materials principles are applied to the stress analysis of machine components and structures. The effects of buckling and combined bending, torsion, and axial loadings are studied together with the effects of stress risers due to geometrical complexities. Topics include: 3D stress transformations; principal stresses; Mohr's circle; failure criteria; torsion of non-circular and hollow cross sections; stress concentration factors; equilibrium and energy methods; global and local buckling; introduction to finite element methods.
Pre-req: ENGN.2060, and ENGN.2050, and MECH.2960, and MECH.3610, and MATH.2310, and C- or better required for ENGN.2050 and ENGN.2060, or Spring 2020 grade of "P".
Design and kinematic analysis of mechanisms. Course topics include linkage synthesis and motion analysis (position, velocity and acceleration), cam, gear and power train design, and technical communication. This course meets the Essential Learning Outcome of Critical Thinking and Problem Solving as defined under the Core Curriculum requirements. As such, the course will reinforce the students' ability to identify, analyze, interpret, and evaluate arguments, data, evidence, problems, and conclusions as part of formulating an opinion or conclusion, and then use that information to design, evaluate and implement a strategy to achieve a desired outcome.
Pre-req: C- in ENGN.2050 Statics and C- in ENGN.2070 Dynamics, and Pre-Co req MECH.2010 Computer Aided Design and Mechanical Engineering majors only.
Design of cams and gear trains and control of mechanical devices. Course topics include: cam sizing and manufacture, cam and gear train kinematics, dynamic force analysis, machine balancing, introduction to the control of mechanical systems. The major project involves the design, analysis, manufacture, and dynamic testing of a cam having specified performance requirements; computer aided design (CAD) and computer numerically controlled (CNC) milling machines are applied. Dynamic simulation (MATLAB) is used throughout the course.
Pre-Req: MECH.3210 Kinematics of Mechanisms, with grade of 'C-' or higher.
Control of various elements of automated and cyber-physical systems. Course topics include: introduction to modeling in continuous and discrete time, ordinary differential and difference equations, transfer functions, noise modeling and digital filtering, introduction to feedback control, and PID controller design and tuning. Course will also include discussion of case studies related to the security, stability, safety, reliability, and ethics of automated systems, with focus on diagnostics and prognostics. This course will rely on project-based learning to evaluate outcomes.
The theory of steady state and transient heat conduction in solids is developed and applied. The concepts of Biot and Fourier numbers are covered and their applications are studied. The principals of thermal radiation with application to heat exchange between black and non-black body surfaces are studied. The use of radiation networks (electrical network analogy) is examined. Surface radiation properties are extensively covered. Design projects are integrated into the course.
Pre-Reqs: MECH 2420 Thermodynamics, MATH 2310 Calculus III, and MATH 2360 Eng Differential Equations or MATH 2340 Differential Equations.
Internal and external flows with friction, Reynold's number, laminar and turbulent flows. Mathematical development of the hydrodynamic boundary layer. Boundary layer separation and fluid dynamic drag. Flow in pipes. Forced and free convective heat transfer, the thermal boundary layer, Reynolds' analogy, Prandtl and Grashof numbers. Empirical engineering convection relations. Students engage in a design project throughout the term.
Pre-Reqs: MECH 3410 Conduction & Rad Heat Transfer and MECH 3810 Fluid Mechanics.
This course focuses on the application of a variety of mathematical techniques to solve engineering problems. Topics include, error analysis, root finding, optimization, linear algebra, solutions to linear and non-linear systems, statistics, curve fitting, eigen value analysis, Fourier analysis, numerical integration and differentiation as well as numerical solutions to ordinary differential equations. MATLAB program development and modification as well as application of existing codes are required.
Pre-req: MATH.1320 Calculus II, and Co-req or Pre-req: MATH.2360 Engineering Differential Equations, or MATH.2340 Differential Equations.
A calculus-based course that explores the properties of fluids in various states and their reaction to forces acting on them in the context of practical engineering systems. Topics include: fluid behavior and fluid properties; hydrostatic pressure and forces; buoyancy and stability; conservation of mass, momentum, and energy; control volumes and system representations; dimensional analysis and similitude; scale analysis and modeling; internal and external flows; laminar and turbulent flows; fluid flow in pipes and ducts; friction, major losses, and minor losses; boundary layer characteristics, drag, and lift.
Pre-req: MATH.2310 Calculus III, and MATH.2360 Eng Differential Equations, or MATH.2340 Differential Equations, and ENGN.2070 Dynamics with a C- or better, or Spring 2020 grade of "P", and Co-req or Pre-req: MECH.2420 Thermodynamics.
A calculus-based engineering course providing treatment of the fundamental modes of heat transfer. Topics include: steady-state and transient heat conduction in solids; forced and natural convection; the concept of thermal boundary layer; scale analysis and dimensionless number such as Reynolds, Prandtl, and Grashof numbers; Reynolds analogy; empirical engineering convection relations; thermal radiation involving heat exchange between black and non-black body surfaces.
Pre-req: MECH.3810 Fluid Mechanics with a C- or better, or Spring 2020 grade of "P", and ME Majors only.
Students work on engineering design/build/test (DBT) projects under the supervision of a mechanical engineering faculty member. Projects can include student club based DBT projects. Completion of 22.400, 22.300, and 22.200 can count as a mechanical engineering technical elective (academic petition required).
Pre-Req: 22.300 Mechanical Eng Project II.
Students perform experiments demonstration thermal fluids concepts, including fluid mechanics and heat transfer, in a laboratory setting. They engage with measurement and diagnostics systems, including various transducers, their associated signal conditioners, as well as digital data acquisition and recording devices. Statistical methods are emphasized for data analysis. Students perform calibration and select appropriate sampling rates and test durations for experiments. They systems tested range from a simple multi-sensor laboratory apparatus to commercial scale thermal-fluids systems. Meets Core Curriculum Essential Learning Outcome for Quantitative Literacy (QL).
Pre-req: MECH.3820 Heat Transfer, with a C- or better, or Spring 2020 grade of "P".
This course is an extension of 22.302 Mechanical Engineering lab I, and extends the laboratory measurements for a wide variety of dynamic systems applications including first order and second order systems using both time domain and frequency domain approaches for the measurement and analysis of dynamic response. lectures will delve into more depth on time domain digital signal processing (extending the ME lab I course material) and progress Into frequency domain representations oftime response. This course counts as a mechanical engineering technical elective.
Pre-req: MECH 3020 Mechanical Engineering Lab I, ENGN 2060 Strength of Materials, MECH 3610 Math Methods for ME, and MECH 4510 Dynamic Systems Analysis.
Students perform independent design work and participate in team efforts to develop conceptual designs from functional requirements. Perform design analysis and synthesis, modeling, fabrication, testing, cost estimating, and documenting the essential elements of the system design. Meets Core Curriculum Essential Learning Outcome for Applied & Integrative Learning (AIL), Information Literacy (IL), and Written & Oral Communication (WOC).
Pre-req: MECH.4410 Thermo-fluid Applications, and MECH.4250 Design of Machine Elements, and MECH.4730 Design Theory and Constraints, and Senior Status, and Permission of Instructor.
The principles of mechanics and commonly used failure theories are applied to the design and analysis of machine elements subjected to static and dynamic (fatigue) load conditions. Elements studied include power screws, bolts, springs, bearings, gears, lubrication, shafts, brakes, clutches, and belts.
Pre/Co-req: MECH.3220 Control of Mechanical Systems, or MECH.3230 Control of Automated Systems, and Pre-req: C- or better in MECH.2960 Materials Science for Engineers, and MECH.3110 Applied Strength of Materials, or Spring 2020 grade of "P".
Introduces a comprehensive range of green energy sources, and the tools and techniques to use that energy. A strong emphasis is given to residential applications, particularly those that are cost effective. Topics include solar energy, photovoltaic, water power, wind power, geothermal heating, and bio- fuel production and use. Course will also investigate architectural considerations essential to effective implementation of green energy. Course is open to Seniors in engineering and science and those with a solid knowledge of vector notations and college algebra. Familiarity with the MATLAB computing environment would be useful.
This is a review course for students planning on taking the Mechanical Engineering version of the Fundamentals of Engineering (FE) Exam. Lectures will review theory, and students will be required to complete representative multiple-choice practice and test questions. Subject areas to be covered are as follows: mathematics and statistics, computers, ethics and economics, electromagnetism, engineering mechanics, materials, thermal fluids, measurement and instrumentation, dynamic systems and controls, and ME design and analysis. FE exam protocols will also be reviewed. The course counts as a mechanical engineering technical elective. Taking and /or passing the FE exam is not required in order to pass this course.
Senior Status or Permission of Instructor.
Topics covered include: heat exchanger analysis and design; thermodynamic analysis of : gas power cycles, steam and combined cycles, and refrigeration cycles; mixtures of ideal gases; air-vapor mixtures and psychometric charts with application to air conditioning systems; flow of a compressible fluid through a variable area passage: Mach number, choking conditions, and normal shock.
Pre-req: MECH.2420 Thermodynanics with a C- or better,or Spring 2020 grade of "P", and Co-req: MECH.3820 Heat Transfer.
Application of the principles of thermodynamics, fluid mechanics and heat transfer to the design of thermofluid systems. Techniques will be presented for modeling, simulation, and economic analysis. The evolution of thermofluid systems from the Industrial Revolution to state-of-the-art systems as well as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability of systems will be studied. Use and regulation of thermo-fluid systems on a global and regional scale will be investigated. Systems to be studied and designed include combined power cycles, trigeneration (combined power, heating, and cooling) as well as energy storage systems.
Pre-req: MECH.4410 Thermo-Fluid Application with a C- or better, or Spring 2020 grade of "P", and ME Majors only.
Dynamic modeling of mechanical, electrical, electro-mechanical, hydraulic and thermal components. Application of ordinary differential equations, Laplace transforms, and numerical simulation for the response of these systems; response due to initial conditions and to transient and sinusoidal inputs using both time and frequency domain approaches considered. Use of block diagrams and numerical simulation using MATLAB and Simulink for linear time invariant systems is emphasized. Project work includes model identification and synthesis from measured data for first and second order systems.
Pre-req: MATH.2360 Engineering Differential Equations, or MATH.2340 Differential Equations, and EECE.2110 Fundamentals of Electricity, or PHYS.1440 Physics II, and C- or better in ENGN.2070 Dynamics, or Spring 2020 grade of "P".
Devices and methods to monitor and control mechanical systems, with particular emphasis on the use of embedded microprocessors.
Pre-Req: 22.361 Math Methods for Mech Eng.
Concepts of world class design and manufacturing of modern products, including the issues of Design for Quality (DFQ), cost and the customer will be studied. Tools and techniques to be studied include Total Quality Management (TQM), statistical process control, process capability studies, six sigma quality, design efficiency ratings, design for cost, design of experiments, Analysis of Variance (ANOVA) of the mean and signal-to-noise ratio, and quality function deployment. Industrial case studies are used and student project work is required.
Pre-req: MECH.3020 Instrumentation and Measurement Laboratory.
Fundamentals of subsonic aerodynamics. Atmosphere models. Air speed measurement, boundary layers, aerodynamic heating. Circulation, downwash, and three-dimensional wing theory. Airfoil data, and lift and drag of aircraft components. Power required and power available. Introduction to aircraft performance calculations.
Pre-Reqs: ENGN 2070 Dynamics and MECH 3810 Fluid Mechanics.
Summary of the ocean environment. Fluid mechanics of ocean waves. Modeling and scaling laws for ships, submarines, and river and estuary flows. Hydrodynamics of offshore and coastal structures. Floating and submerged body hydrodyamics. Marine propulsion. Introduction to various underwater systems.
Pre-req: Pre-Reqs: ENGN 2070 Dynamics, and MECH 3810 Fluid Mechanics.
There is currently no description available for this course.
This course provides seniors in Mechanical Engineering with the opportunity to pursue the study of a technical topic or project, individually under the supervision of a faculty member and, if desired, a responsible project engineer from industry. The course is to result in a term paper or technical report.
This course is designed to introduce machine tool programming languages and their use in modern manufacturing. Emphasis will be placed upon students developing a formal understanding of the programming variables and constraints of Computer-Numerically Controlled manufacturing systems. Students will learn both introductory and advanced programming methods. Students will learn manual programming techniques developed from engineering drawings. Students will also learn manual programming techniques developed from engineering drawings. Students will also learn to use computer-based CAM software systems as well as computer based programming verification software. Mastercam, Esprit CAM, Autodesk CAM will be introduced in the course as exemplars of CAM software platforms. Vericut will be introduced as an exemplar of verification software.
Students will develop an understanding of precision metrology and the machine tools, related equipment, and systems used in manufacturing. Students will learn the inter-relationships between machine tools, various machining methods, engineering design considerations, and manufacturing techniques studied in the MET program. Lecture, case studies, and laboratory work are supported by a comprehensive text with supplemental materials provided by the instructor to enhance student learning. Students will work with lathes, drill presses, vertical milling machines, and abrasive finishing methods during laboratory sessions to manufacture several precision finished parts from engineering drawings. Course grades will be determined from student performance on examinations and laboratory projects.
Pre-req: MTEC.1010 Engineering Graphics