Skip to Main Content

Hengyong Yu


Yu Hengyong
Dr. Hengyong YuProfessor

Selected Publications

  • Zhang, Y., Mou, X., Wang, G., Yu, H. (2017). Tensor-Based Dictionary Learning for Spectral CT Reconstruction. IEEE Transactions on Medical Imaging, 36(1) 142 - 154.
  • Miao, C., Yu, H. (2016). Alternating Iteration for Regularized CT Reconstruction!!! IEEE Access, 4 4355–4363.
  • Wang, M., Zhang, Y., Liu, R., Guo, S., Yu, H. (2016). An adaptive reconstruction algorithm for spectral CT regularized by a reference image. Physics in Medicine and Biology, 61(24) 8699.
  • Wu, W., Yu, H., Wang, S., Liu, F. (2016). BPF-type Region-of-interest Reconstruction for Parallel Translational Computed Tomography. arXiv preprint arXiv:1610.06170.
  • Salehjahromi, M., Zhang, Y., Yu, H. (2016). Comparison studies of different regularizers for spectral computed tomography (9967: pp. The Society of Photo-Optical Instrumentation Engineers (SPIE) - ). Proceedings of SPIE - The International Society for Optical Engineering
  • Wu, P., Xia, K., Yu, H. (2016). Correlation coefficient based supervised locally linear embedding for pulmonary nodule recognition. Computer Methods and Programs in Biomedicine, 136 97 - 106.
  • Yang, H., Yu, H., Wang, G. (2016). Deep Learning for the Classification of Lung Nodules. arXiv preprint arXiv:1611.06651.
  • Wu, P., Xia, K., Zhang, Y., Qian, X., Wang, G., Yu, H. (2016). Dictionary learning-based CT detection of pulmonary nodules (pp. 99671S–99671S).
  • Gong, H., Liu, R., Yu, H., Lu, J., Zhou, O., Kan, L., He, J., Cao, G. (2016). Interior tomographic imaging of mouse heart in a carbon nanotube micro-CT. Journal of X-Ray Science and Technology, (Preprint) 1–15.
  • Kong, H., Liu, R., Yu, H. (2016). Ordered-subset Split-Bregman algorithm for interior tomography. Journal of X-Ray Science and Technology, (Preprint) 1–20.
  • Zhang, J., Yu, H., Qian, X., Liu, K., Tan, H., Yang, T., Wang, M., Li, K.C., Chan, M.D., Debinski, W., Paulsson, A., Wang, G., Zhou, X. (2016). Pseudo progression identification of glioblastoma with dictionary learning. Computers in Biology and Medicine, 73 94 - 101.
  • Wu, P., Xia, K., Yu, H. (2016). Relevance Vector Machine Based Pulmonary Nodule Classification. Journal of Medical Imaging and Health Informatics, 6(1) 163–169.
  • He, L., Miskell, T., Liu, R., Yu, H., Xu, H., Luo, Y. (2016). Scalable 2D K-SVD parallel algorithm for dictionary learning on GPUs (pp. 11 - 18). 2016 ACM International Conference on Computing Frontiers - Proceedings
  • Zhang, Y., Yu, H. (2016). Tensor decomposition and nonlocal means based spectral CT reconstruction (9967: pp. The Society of Photo-Optical Instrumentation Engineers (SPIE) - ). Proceedings of SPIE - The International Society for Optical Engineering
  • Chen, M., Yu, H. (2015). Analytic reconstruction algorithms for triple-source CT with horizontal data truncation. Medical Physics, 42(10) 6062-6073.
  • Kong, H., Yu, H. (2015). Analytic reconstruction approach for parallel translational computed tomography. Journal of X-Ray Science and Technology, 23(2) 213-228.
  • Yu, H., Wang, G., Yang, J., Pack, J.D., Jiang, M., De Man, B. (2015). Data consistency condition for truncated projections in fan-beam geometry. Journal of X-Ray Science and Technology, 23(5) 627-638.
  • Miao, C., Yu, H. (2015). General thresholding representation for the Lp regularization. IEEE Transactions on Image Processing, 24(12) 5455-5468.
  • Wang, G., Butler, A., Yu, H., Campbell, M. (2015). Guest Editorial Special Issue on Spectral CT. Medical Imaging, IEEE Transactions on, 34(3) 693-696.
  • Lu, K., Liu, B., Yu, H. (2015). On dose reduction and view number in computed tomography. CT Theory and Applications, 24(2) 169-176.
  • Tan, S., Zhang, Y., Wang, G., Mou, X., Cao, G., Wu, Z., Yu, H. (2015). Tensor-based dictionary learning for dynamic tomographic reconstruction. Physics in Medicine and Biology, 60(7) 2803-2818.
  • Liu, R., Luo, Y., Yu, H. (2014). GPU-based acceleration for interior tomography. IEEE Access, 2 757-770.
  • Yu, H., Mou, X., Wang, G. (2014). Editorial: Emerging computed tomography technologies (2: pp. 1680-1682). ; IEEE Access