Skip to Main Content

Catalog : EECE.5090 Linear Systems Analysis (Formerly 16.509)

EECE.5090 Linear Systems Analysis (Formerly 16.509)

Id: 003265 Credits: 3-3

Description

Correlation and Circular convolutions. Concepts of orthogonality and Gramm-Schmidt orthogonalization procedure. Fourier series and Fourier transforms (FT): convergence properties; applications to linear systems including modulation, sampling and filtering. Hilbert transforms (HT) and analytic signals. Bilateral Laplace transforms (LT): convergence properties. Contour integration methods applied to FT, HT and LT. Discrete-time Fourier series and Fourier transforms including complex convolution: applications to linear systems. Discrete Fourier transforms and Fast Fourier algorithm. Ztransforms: convergence properties, solution of difference equations, application to linear systems. Correlation.

View Current Offerings

Course prerequisites/corequisites are determined by the faculty and approved by the curriculum committees. Students are required to fulfill these requirements prior to enrollment. For courses offered through online or GPS delivery, students are responsible for confirming with the instructor or department that all enrollment requirements have been satisfied before registering.