Niall Barron

Niall Barron

Professor of Biochemical Engineering and Principal Investigator for National Institute for Bioprocessing Research and Training, University College Dublin, Ireland

Biosketch

Niall Barron was appointed NIBRT Principal Investigator and Professor of Biochemical Engineering in the School of Chemical and Bioprocess Engineering in UCD in 2017. He obtained a BA (Mod) in Microbiology from Trinity College Dublin and PhD in Applied Microbiology/Biochemistry from the University of Ulster where he worked on degradation of lignocellulosic substrates by fungal enzymes ethanol production by microorganisms. He then spent three years in Bert O’Malley’s lab at Baylor College of Medicine as a postdoctoral scientist working on genome engineering strategies to study nuclear steroid receptor function. He returned to Ireland to work on stem cell differentiation at the National Institute for Cellular Biotechnology (NICB) in DCU and was appointed to academic staff in 2014. While at the NICB he was instrumental in growing the animal cell engineering group with particular emphasis on the production of recombinant therapeutic proteins from mammalian cell lines and became Centre Director in 2015. Niall is currently treasurer and executive committee member of ESACT, the European Society for Animal Cell Technology, and Senior Reviews Editor of the journal Biotechnology Letters.
My groups’ research interests focus on targeted genetic engineering strategies to improve or control the production of recombinant therapeutic proteins from Chinese Hamster Ovary (CHO) cells. Typically this involves profiling of miRNA, mRNA and protein expression and subsequent analysis and integration of these datasets with a view to identifying engineering targets to improve CHO cell phenotypes relevant to the Biopharmaceutical industry. We are interested in developing advanced recombinant DNA engineering strategies for improved phenotypic stability and selection of producer lines. This includes methods for targeted genome modification (using viruses and CRISPR-Cas9 approaches) and directed evolution.