A spacecraft's communication system enables spacecrafts to transmit data and diagnostics to Earth, receive commands from Earth, or relay information between other spacecraft. NASA highlights commercial-off-the-shelf (COTS) communications systems that operate in different communication bands, with Ultra High Frequency (UHF) as the most commonly selected band.

SPACE HAUC is an educational 3U cube satellite mission demonstrating high data transmission rates beyond the S band, accomplished with a steerable X-band phased array system.

- This novel radio, designed by students, is the primary payload of a technology demonstration.
- An additional standard radio is selected to monitor the primary payload and to act as a fail-safe.
- Two options operating in the frequently selected UHF band are EnduroSat's UHF transceiver and Planet Labs' OpenLST radio system.

SPACE HAUC will demonstrate high rate data transmission (up to 100 Mbps) which is essential for imaging applications that dominate nanosatellite missions.

Abstract

Planet Lab’s OpenLST

- Open Source system:
 - Full design files, including schematics, bill of materials, layout, and firmware
 - Operational in Space Research UHF band
 - Downlink: 401.3 MHz at 3.5 kbps data rate with 1W transmitter RF power
 - Uplink: 450 MHz at 3.5 kbps data rate with -112 dBm receiver sensitivity
 - Antenna: Tape measure dipole
 - Cost: $1000

EnduroSat’s UHF Transceiver II

- Flight proven COTS system:
 - Designed and sold by EnduroSat
 - Operational in amateur UHF band
 - Downlink: 435-438 MHz at 9.6 kbps data rate with 1W transmitter RF power
 - Uplink: 435-438 MHz at 9.6 kbps data rate with -121 dBm receiver sensitivity
 - Antenna: Tape measure dipole
 - Cost: $5000

Developments

- **X-band communication system** is completed and undergone preliminary testing; results are better than expected:
 - A single link of the 16 elements was tested using IC components on evaluation boards; expected output power was 19.5 dBm, and test results output was 21 dBm
 - Patch antenna array VSWR was tested:
 - Result: less than 1.7:1 VSWR in 7 to 8.5 GHz range
 - Final RF boards are currently being manufactured
 - The complete system will be tested next month.

- **Fail-safe communication system**:
 - Decided to move forward with EnduroSat UHF system.
 - Currently working towards final integration of EnduroSat system
 - OpenLST system is still being developed as a cheap fail-safe system alternative for future missions

Goals

- 50 Mbps downlink communication data rate; stretch goal of 100 Mbps
- Adaptive beam steering: direct the radio signal beam to earth station without physically moving the satellite
- Flight proven fail-safe communication system with omni-directional antenna

X-Band Communication System

- It operates in the X-band (7.2 - 8.3 GHz) and uses a 16 element (4 x 4) patch antenna array.
- The phased array will create a 25º (FWHM) beam and will also demonstrate beam steering over ± 45º with less than 5º error.
- The X-band communication system consists of COTS radio; and student designed patch antenna array, RF front-end module for signal processing and beam steering.
- The system occupies a 1.5U volume and weight less than 1 Kg. Its transmitter and receiver consume approximately 9W power each; transmit RF power is 1.6 W with a receiver sensitivity of -115 dBm.
- A patch antenna array is designed to resonate in wide-band frequency with high gain, and with beam steering capability.

Acknowledgements

SPACE HAUC is a undergraduate project worked on by more than 100 students since 2016.

SPACE HAUC's technology development is provided by BAE, Draper, MIT Haystack, and 4C Test Systems.

SPACE HAUC is supported by UMass Lowell, the Lowell Center for Space Science and Technology, Francis College of Engineering, and NASA.