Table of Contents

Table of contents
2

1. Introduction 4

2. Roles and Responsibilities 5
2.1 Institutional Biosafety Committee 5
2.2 Role of the IBC Chair 5
2.3 Institutional Compliance Office 6
2.4 Biosafety Officer 6
2.5 Deans/Department Chairs 7
2.6 Principal Investigators (PI's) 7
2.7 Researcher, User, or Employees 8

3. Scope and Regulations 9

4. Biohazards and Potentially Infectious Materials 11
4.1 Biohazard Definition 11
4.2 Categories 11
4.3 Recombinant DNA (rDNA) 11
4.3.1 Generation of rDNA 11
4.3.2 Human Gene Therapy 12
4.3.3 Transgenic Animals 12
4.3.4 Transgenic Plants 12
4.4 Other Potentially Hazardous Biological Materials 12
4.4.1 Human Blood, Blood Products, Body Fluids and Tissues 12
4.4.2 Use of Animals 13
4.4.3 Tissue Culture/Cell Lines 14
4.4.4 Guidelines for Preventing the Transmission of Tuberculosis 14
4.4.5 Use of Vaccinia Virus 15
4.5 Clinical Laboratories 15
4.6 Characteristics of Biohazardous Agents 16

5. Principles of Biosafety 18
5.1 Containment 19
5.2 Biosafety Levels 20
5.3 Vertebrate Animal Biosafety Levels 21

6. Practices and Procedures 26
6.1 Administrative Controls 26
6.1.1 Biohazard Warning Signs and Posting 26
6.1.4 Medical Surveillance 26
6.2 Engineering Controls 26
6.2.1 Biological Safety Cabinets (BSCs) 26
6.2.2 Safety Equipment 27
6.3 Recommended Work Practices 27
6.3.1 Standard Microbiological Practices 27
6.3.2 Use of Pipettes and Pipetting Aids
6.3.3 Use of Syringes and Needles
6.3.4 Safe and Effective Use of BSCs
6.3.5 Use of Cryostats
6.3.6 Use of Centrifuge Equipment
6.3.7 Use of Blenders, Ultrasonic Disrupters, Grinders and Lyophilizers
6.3.8 Loop Sterilizers and Bunsen Burners
6.4 Laundry
6.5 Housekeeping
6.5.1 Practical Custodial Concerns
7. Personal Protective Equipment (PPE)
 7.1 Face Protection
 7.2 Laboratory Clothing
 7.3 Gloves
 7.4 Respirators
8. Biohazard Spill Clean-Up Procedures
 8.1 Spill Clean-Up
 8.1.2 Inside the BSC
 8.1.2 In the Lab, Outside the BCC
 8.1.3 Inside Centrifuge
 8.1.4 Outside Lab, During Transport
9. Decontamination
 9.1 General Procedures
 9.2 Methods
 9.2.1 Heat
 9.2.2 Liquid Disinfection
 9.2.3 Vapors and Gases
 9.2.4 Radiation
10. Biohazardous Waste Management
 10.1 Handling
 10.1.1 Used Sharps
 10.1.2 Fluids in Volumes Greater Than 20 cc
 10.1.3 Other Infectious Waste
 10.1.4 Decontaminated Infectious Waste
 10.2 Mixed Waste
 10.3 Storage
 10.4 Monitoring Treatment of Infectious Waste
 10.5 Animal Parts and Carcasses
 10.5 Cadavers parts and animal parts embalmed to be used in teaching labs
11. Packaging and Shipping of Biomedical Materials
 11.1 Definitions
 11.1.1 Packaging of Diagnostic Specimens and Biological Products
 11.2 Packaging of Materials Containing Etiologic Agents
12. Import of Etiologic Agents
13. Export Control
Table 1 Classification of Infectious Microorganisms by Risk Group
Table 2 Recommended Biosafety Levels for the use of Infectious Agents

Table 3 Recommended Biosafety Levels for Activities Using Infected Vertebrate Animals

1. Introduction

The University of Massachusetts Lowell Biosafety Manual is intended to be a resource for information, guidelines, policies, and procedures that will enable and encourage those working in the laboratory environment to work safely and reduce or eliminate the potential for exposure to biological hazards. The information presented here also reflects the requirements and guidelines of federal and state regulations. It is intended that the Principal Investigator and supervisory personnel will supplement this information with instruction and guidance regarding specific practices and procedures unique to the work being done by those in their laboratories.

The UMass Lowell is committed to providing a safe and healthful learning, teaching and research environment. The goals of the EHS-Biological Safety Program are to:

- Protect staff and students from exposure to infectious agents,
- Prevent environmental contamination,
- Protect experimental materials
- Comply with federal and local regulations.

This manual provides university-wide safety guidelines for those working with biohazards. It outlines general policies and procedures for using and disposing of infectious or potentially infectious materials. Federal and state regulations and guidelines mandate these practices. Updates to this manual are available at Environmental Health and Safety. If procedures currently in practice in your laboratory do not comply with those in this manual, please make the necessary changes to do so. Principal investigators or laboratory supervisors must call the EHS Department/Biosafety Officer at 978-934-2618, if they are uncertain how to categorize, handle, store, treat or discard any biologically derived material.
2. Roles and Responsibilities

2.1 Institutional Biosafety Committee
For basic and preclinical research, IBCs have the responsibility to
- Review policies, programs, and directives regarding the use of biohazardous materials in academic, research, clinical, and animal care activities;
- Review rDNA research for compliance with NIH Guidelines including
 - assessment of the containment levels required for the proposed research;
 - assessment of the facilities, procedures, practices, and training and expertise of personnel involved in rDNA research;
 - ensure compliance with all surveillance, data reporting, and adverse event reporting;
- Review all IBC Registration applications and notify the PI of the results of the review;
- Approve lower containment levels for certain experiments in which DNA from Risk Group 1-2 is cloned in non-pathogenic organisms;
- Set containment levels for experiments involving biohazardous materials;
- Periodically review institutional compliance with NIH Guidelines
- Report any significant problems with or violations of the NIH Guidelines and any significant research-related accidents or illnesses to the appropriate institutional official and NIH/OBA within 30 days
For human gene transfer research, IBCs must ensure:
- No participant enrolled is enrolled until NIH-RAC review is completed and IRB and IBC approval is obtained
- Issues raised by NIH-RAC in public review are considered
- Final IBC approval occurs only after NIH-RAC review
- Compliance with surveillance, data reporting, and adverse event reporting is maintained

Note: No member of the IBC may vote on or be present for IBC review and discussion of a proposal in which the member has a financial or institutional conflict of interest. In such instances the IBC member will voluntarily declare the conflict and excuse herself/himself from the meeting until the IBC takes action on the proposal.

2.2 Role of the IBC Chair
The chief responsibility of the IBC Chair is to provide leadership to the IBC. The Chair is responsible for:
- Developing meeting agendas
- Convening and leading meetings
- Determining exempt projects
- Providing orientation for new members
- Ensuring IBC members are properly trained

The Chair also plays a significant role in the assessment of Biosafety misconduct, serious adverse biosafety events, and relaying information on Biosafety to the UML Community.
2.3 Institutional Compliance Office

The Institutional Compliance Office (ICO) is responsible to review all policies and procedures outlined in this manual where rDNA and Biological Agent activities occur at least once a year. The purpose of the program review is to assess the overall policies and procedures for biosafety at UML and ensure that they meet all regulatory requirements and community needs. Any deficits in policy will be brought to the IBC for discussion and action. The ICO or University of Massachusetts System General Counsel may revise policies and procedures in order to comply with new statutory or regulatory requirements.

2.4 Environmental Health and Safety Department (EHS)

- EHS monitors compliance with University safety policies and procedures regarding potentially infectious and biohazardous materials;
- Assists PI's in the selection of appropriate laboratory practices, equipment and controls;
- Provides technical guidance to all personnel on matters related to laboratory safety;
- Develops and conducts appropriate training programs to promote techniques for the safe handling and disposal of biohazardous materials;
- Oversees the use of biohazardous materials by PI's in accordance with IBC authorized use and NIH or BMBL safety criteria for the handling of those agents;
- Investigates all reported accidents which may result in personnel or environmental exposure to biohazardous materials and makes recommendations to all appropriate authorities about a) continuing practices in the affected location and b) how to address the prevention of future accidents;
- Oversees the infectious waste disposal program.
- Reviews and approves the pre-purchase of Biological agents and biological products through the PeopleSoft program (similar as Chemical and radiological purchasing process).

2.5 Biosafety Officer

A Biological Safety Officer (BSO) must be appointed by the Institution if it engages in large scale research, which is indicated if production activities involving viable organisms containing rDNA molecule of 10 liters or more of any one cell line or if the institution engages in rDNA research that requires use of BSL3. The BSO reports to the EHS Director and has responsibility for oversight of research and other activities involving the use of biohazardous materials. In the absence of a BSO, staff from the Environmental Health and Safety Office will fulfill this role. Containment levels are set in accordance with the NIH Guidelines for Research Involving rDNA Molecules (NIH Guidelines) and the Biosafety in Microbiological and Biomedical Laboratories, PHS./CDC/NID (BMBL). The BSO reports violations of the NIH Guidelines and UML policies and procedures to the responsible Institutional Official and the IBC.
The BSO must be a voting member of the IBC. BSO duties include but are not limited to

- Advising and training the IBC members, faculty, and staff as necessary in safe use and practices for working with potentially biohazardous materials
- Reviewing or pre-reviewing registrations for the IBC and providing recommendations to ensure safe practices are followed
- Inspecting facilities and reporting results to the IBC on an annual basis
- Reviewing and inspecting activities involving biohazardous materials in coordination with other EHS personnel, the Office of Research Services Facility Manager, and the Director of Institutional Compliance
- Reporting to the IBC and the Institution Official any significant concerns, violations of the NIH Guidelines or UML policies and procedures, and research-related accidents or illnesses
- Providing assistance, input, and support required for emergency response
- Developing emergency plans for containment, handling accidental spills, and personnel contamination
- Determining the necessity for health surveillance of personnel involved in projects that involve biohazardous substances
- Providing technical advice to PIs on laboratory containment facilities, safety equipment, security, and research safety procedures
- If a biosafety violation occurs, then an investigation will be initiated by the IBC Chair with assistance from the Biosafety Officer and/or EHS staff.

2.6 Deans/Department Chairs.

Deans/Department Chairs are responsible for the implementation of safe practices and procedures in their colleges or departments.

2.7 Principal Investigators (PI's).

PI's are responsible for identifying potentially infectious and biohazardous materials in proposing, planning and carrying out research activity. PIs are also responsible to implement necessary specific control procedures within their own laboratories. This responsibility may be delegated only to experienced or trained personnel and only to university employees. Students may not be delegated primary responsibility. PI's are also responsible for making certain staff and students have received proper instruction in the potential hazards of biologically derived materials. All protocols involving work with potentially infectious agents must be submitted to IBC for review and approval. For more information call the Biosafety Officer/EHS at 978-934-2618.

- Completes a Memorandum of Understanding and Agreement (MUA) for all research proposals involving the use of biological materials or agents;
Accepts direct responsibility for the health and safety of those working with biological materials in his/her laboratory,

Identifies potentially infectious and biohazardous materials proposed for use;

Submits research registration form(s) to the IBC for review and approval before commencing with any research activities using biohazardous substances;

Implements necessary specific control procedures within their own laboratories and ensure that students and staff working there receive proper instruction in the potential hazards of the materials they are working with;

Sets an example by their own actions to ensure compliance with the regulations and procedures described in the UMass Lowell EHS-manuals (Exposure Control Plan, Chemical Hygiene Plan, Biosafety Manual) and provide directives and guidelines for the work they supervise;

Notifies the Offices of Institutional Compliance of any proposed activity using biohazards by indicating so on the Proposal Information Sheet accompanying a grant proposal;

Ensures that reporting requirements are fulfilled and be accountable for any reporting lapses;

Ensures that copies of approval letters are received by the funding agency or sponsor of any proposed research;

Coordinates use and transport of biohazardous materials with EHS and refer to EHS Policies and Procedures as necessary;

Reports any significant problems to the EHS and BSO after the project is initiated;

Reports incidents promptly to the BSO/EHS office;

Assists in any resulting decontamination and follow-up investigation or reporting that may be required.

2.8. Researcher, User, or Employees.

Are responsible for:

Participating in mandated training and instruction;

Becoming familiar with all biological agents being used in the lab and the potential risks associated with exposure;

Following all laboratory practices and protocols and complies with all applicable guidelines and policies;

Completing any necessary medical surveillance;

Reporting all accidents, spills, or contamination incidents to supervisor;

Reporting unsafe conditions to the PI, Supervisor or EHS;

Seeking guidance from their PI, Supervisor or EHS when they are uncertain how to handle, store or dispose of any hazardous or biohazardous material.
3. Scope and Regulations

This Manual is applicable to all laboratory, research, service and support activities that may involve exposure to biohazardous agents or materials and that come under the purview of the Institutional Biosafety Committee (IBC).

The Biosafety Program at UMass Lowell is intended to cover all hazardous or potentially hazardous biological agents recognized by the Institutional Biosafety Committee (IBC).

The IBC defines biological agents covered by this policy as:

1. Pathogenic or infectious bacteria, viruses, fungi, parasites or nucleic acids (prions) or agents of unknown pathogenicity to humans, plants or animals;
2. Drug resistant bacteria, including those with drug resistant plasmids;
3. Human tissue or body fluids and non-human primate materials (blood, blood components, tissues, body fluids, and potentially infectious cultured human or animal cells);
4. Recombinant DNA or transgenic plants, animals and microbes;
5. Infected animals or animal tissues;
6. Select agents and biologically derived toxins;
7. Research that involves any of the above materials with animal and/or human subjects;
8. Stem cells.

This Manual does not address issues of radiation or chemical safety. These are covered in the UMass Lowell Chemical Hygiene Plan (CHP) and Radiation Safety Manual and can be accessed by contacting EHS at extension 2618 and the radiation safety department at extension 3373.

Regulations and Guidelines

Guidelines developed by the National Institutes of Health (NIH) and the Centers for Disease Control and Prevention (CDC) form the basis for the biosafety practices included in this manual. These guidelines must be followed to ensure the continuation of grant funds from federal agencies.

The NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines):

- Mandate the establishment of an Institutional Biosafety Committee (IBC) for the review and oversight of biological research;
- Outline roles and responsibilities for biosafety;
- Establish the practices, procedures, and conditions under which recombinant DNA work must be conducted;

The companion guidelines from CDC-NIH, Biosafety in Microbiological and Biomedical Laboratories (BMBL) address the appropriate measures and facilities for work with...
all microbial agents, including bacterial, viral, fungal, parasitic, and rickettsia agents.

For work with human blood and some other body fluids and human tissue, the requirements of the Occupational Exposure to Bloodborne Pathogens standard from the Occupational Safety and Health Administration (OSHA) apply. The UMass Lowell Exposure Control Plan (ECP) describes all requirements that need to be in place for this type of work. The ECP is posted in the EHS web site and can be obtained by contacting the Biosafety Officer at the EHS office.

The obtaining, possession, use, or transfer of any select biological agent or toxin is strictly regulated by federal code and regulations. It requires federal permits and inspection as well as significant measures of lab security, personnel training, and accurate record keeping regarding the status of possessed materials. Further information on select agents and toxins can be obtained by contacting the Biosafety Officer at the EHS office.

Handling and disposal of bio hazardous waste is regulated and monitored by the MA Department of Environmental Protection under the Regulated Medical Waste rules. The procedures for biological waste handling outlined in Section 13 of this Manual comply with the requirements of these rules.

The requirements for packaging and shipment of biomedical materials that comply with regulations is found in Section 14 of this Manual.

Other permits:

U.S. Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) permits are required for infectious agents of live stock and biological materials containing animal, particularly livestock, material. Tissue (cell) culture techniques customarily use bovine material as a stimulant for cell growth. Tissue culture materials, and suspensions of cell culture grown viruses or other etiologic agents containing growth stimulants of bovine or other livestock origin are, therefore, controlled by the USDA due to the potential risk of introduction of exotic animal disease into the U. S. Applications for USDA/APHIS permits may be obtained from EHS (934-2618). Further information may be obtained by calling the USDA/APHIS at (301) 436-7885.

USDI permits are required for certain live animals and all live bats. Call (800)358-2104 for further information.

Export of infectious materials may require a license from the Department of Commerce. Call (202)482-0896 for further information.
4. Biohazards and Potentially infectious materials

4.1 Biohazard Definition

Biohazard is any infectious agent or biologically derived infectious material that present a risk or potential risk to the health of humans or animals, either directly through infection or indirectly through damage to the environment. Infectious agents have the ability to replicate and give rise to the potential of large populations in nature when small numbers are released from a controlled situation.

4.2. Categories

1. Human, animal and plant pathogens: Viruses, including oncogenic viruses; Bacteria, including those with drug resistance plasmid; Fungi; Parasites;
2. All human blood, blood products, tissues and certain body fluids;
3. Cultured cells (all human or certain animal) and potentially infectious agents these cells may contain;
4. Allergens;
5. Toxins (bacterial, fungal, plant, etc.);
6. Certain recombinant products;
7. Clinical specimens;
8. Infected animals and animal tissues.

4.3 Recombinant DNA (rDNA)

4.3.1. Generation of rDNA.

Experiments involving the generation of rDNA may require registration and approval by the IBC. The National Institutes of Health (NIH) Guidelines for Research Involving Recombinant DNA Molecules is the definitive reference for rDNA research in the United States. There may be experiments which are not covered by the guidelines that do require review and approval by outside agencies before initiation or funding. These experiments are not generally associated with biomedical research but are more common in the agricultural and environmental sciences. If the experimental protocol is not covered by the guidelines, contact the Biosafety Officer at 373-2769 for determination of further review.

If you have any specific questions about a particular host-vector system not covered by the guidelines, please call the Office of Recombinant DNA Activities, National Institutes of Health at (301) 496-9838 or FAX (301) 496-9839. Updates to the NIH Recombinant DNA Guidelines are published in the Federal Register and are available at EHS.
4.3.2. Human Gene Therapy

All protocols involving the generation of rDNA for human gene therapy must be approved locally by the IBC and the Institutional Review Board (IRB) prior to submission to outside agencies and the initiation of experimentation. For more details about IBC approval of human gene therapy protocols and submissions, call 978-934-4134.

4.3.3. Transgenic Animals

Investigators who create transgenic animals must complete a rDNA registration document and submit it to EHS for IBC approval prior to initiation of experimentation. In addition, the Institutional Animal Care and Use Committee (IACUC) protocol must be approved by EHS prior to it being given full approval by the IACUC.

4.3.4. Transgenic Plants

Experiments to genetically engineer plants by recombinant DNA methods may require registration with the IBC. The NIH rDNA guidelines provide specific plant biosafety containment recommendations for experiments involving the creation and/or use of genetically engineered plants.

To obtain an rDNA registration document and a copy of current NIH guidelines, go to www.uml.edu/ehs or call EHS at 934-2618.

4.4 Other Potentially Hazardous Biological Materials

4.4.1. Human Blood, Blood Products, Body Fluids and Tissues

Biosafety Level 2 practices and procedures must be followed when handling human blood, blood products, body fluids and tissues because of the infectious agents they may contain. Biosafety Level 2 practices and procedures are consistent with the concept known as Universal Precautions; which requires all specimens of human blood or other potentially infectious materials to be treated as if they are infectious. In 1991, the Occupational Safety and Health Administration (OSHA) promulgated a standard to eliminate or minimize occupational exposure to Hepatitis B Virus (HBV), Human Immunodeficiency Virus (HIV) and other bloodborne pathogens. This federal regulation, Occupational Exposure to Bloodborne Pathogens, mandates a combination of engineering and work practice controls, training, Hepatitis B vaccination, and other provisions to help control the health risk to employees resulting from occupational exposure to human blood and other potentially infectious materials which may contain these or other specified agents.
Free Hepatitis B vaccination is available to all occupationally at-risk University employees through contacting EHS at 978-934-2618. Mandatory safety training which provides information on protection from occupational exposure to infectious materials is offered by EHS on a varied calendar university-wide. For more information on training or the availability of free Hepatitis B vaccine, call EHS at 934-2618 or www.uml.edu/ehs.

Investigators using human blood, blood products, body fluids or tissues must get BBP training and complete the Supplement UMass Lowell Exposure control Plan (ECP). The ECP is also available for download on the EHS website or by contacting the Biosafety Officer. The completed plan must be available in the laboratory for all workers. In addition, investigators must consult with IRB to ensure that all regulatory requirements relating to the use of human materials or subjects in research are met.

Laboratory personnel (faculty and staff) in HIV or HBV research laboratories must fulfill additional OSHA requirements as follows:

- The employee must attend an annual general biosafety training offered by EHS;
- The employee must have prior experience in the handling of human pathogens or tissue cultures before working with HIV or HBV;
- In the laboratory, the employee must demonstrate proficiency in standard microbiological practices and techniques and in the practices and operations specific to the laboratory to the satisfaction of the principal investigator/laboratory supervisor before being allowed to work with HIV or HBV;
- An employee with no prior experience in handling human pathogens must be trained in the laboratory prior to handling infectious materials. Initial work activities shall not have been demonstrated to the satisfaction of the principal investigator/laboratory supervisor include handling of infectious agents. A progression of work activities will be assigned as techniques are learned and proficiency is developed. Participation in work activities involving infectious agents will be allowed only after proficiency has been proved.

4.4.2. Use of Animals

The use of animals in research requires compliance with the "Animal Welfare Act" and any state or local regulations covering the care or use of animals. Facilities for laboratory animals used for studies of infectious or non-infectious disease should be physically separate from clinical laboratories and facilities that provide patient care.

Vertebrate animal biosafety level criteria must be adhered to where appropriate. All animal protocols involving the use of rDNA; infectious or transmissible agents; human blood, body fluids or tissues; toxins; carcinogenic, mutagenic, teratogenic chemicals; or physically hazardous chemicals (reactive, explosive, etc.) must be submitted to EHS for review and approval prior to final approval by the Institutional Animal Care and Use Committee (IACUC). The PI must notify IACUC and EHS in writing prior to initiation of experimentation at Animal Biosafety Level 2 or Animal Biosafety Level 3. IACUC "guidelines" are available from Office of Research Services.
Investigators who are uncertain how to categorize agents should call EHS (934-2618).

4.4.3. Tissue Culture/Cell Lines

When cell cultures are known to contain an etiologic agent or an oncogenic virus, the cell line can be classified as the same level as that recommended for the agent.

The Centers for Disease Control and Prevention (CDC) and OSHA recommend that all cell lines of human origin be handled at Biosafety Level 2.

Cell lines which are non-primate or are of normal primate origin, which do not harbor a primate virus, which are not contaminated with bacteria, mycoplasma or fungi and which are well established may be considered Class 1 cell lines and handled at Biosafety Level 1.

Primate cell lines derived from lymphoid or tumor tissue, all cell lines exposed to or transformed by a primate oncogenic virus, all clinical material (e.g., samples of human tissues and fluids obtained after surgical resection or autopsy), all primate tissue, all cell lines new to the laboratory (until proven to be free of all adventitious agents) and all virus and mycoplasma-containing primate cell lines are classified as Class 2 and should be handled at Biosafety Level 2.

Investigators planning to perform studies involving suspensions of HIV prepared from T cell lines must be contact the Biosafety Officer before initiated the work. The BSO will advise the investigator about safety containment and practices. The IBC will need to approve this work before begin experimentation.

4.4.4. Guidelines for Preventing the Transmission of Tuberculosis

Since 1985, the incidence of tuberculosis in the United States has been increasing steadily, reversing a 30 year downward trend. Recently, drug resistant strains of Mycobacterium tuberculosis have become a serious concern. Outbreaks of tuberculosis, including drug resistant strains, have occurred in health-care environments. Several hundred employees have become infected after workplace exposure to tuberculosis, requiring medical treatment. A number of health-care workers have died.

In October 1994, CDC published its "Guidelines for Preventing the Transmission of Tuberculosis in Health-Care Facilities, 1994". The guidelines contain specific information on ventilation requirements, respiratory protection, medical surveillance and training for those personnel who are considered at-risk for exposure to tuberculosis. For more information, contact EHS at 934-2618.
Investigators intending to work with *Mycobacterium tuberculosis* in the laboratory must obtain written approval from the UML Institutional Biosafety Committee before beginning work and they must contact the Biosafety Officer before initiated the work. The BSO will advise the investigator about safety containment and practices.

4.4.5. Use of Vaccinia Virus

Investigators wishing to use vaccinia virus must obtain written approval to do so from the UML Institutional Biosafety Committee. Biosafety Level 2 practices and procedures must be followed. Experiments involving the generation of recombinant DNA in vaccinia virus must be registered with the IBC.

All employees who directly handle cultures or animals contaminated or infected with vaccinia, recombinant vaccinia viruses or other orthopox viruses that infect humans must be offered small pox vaccine. Individuals should contact the EHS Office at 978-934-2618 for inquiring when the vaccine is available.

4.5. Clinical Laboratories

Clinical laboratories receive clinical specimens with requests for a variety of diagnostic services. The infectious nature of this material is largely unknown. In most circumstances, the initial processing of clinical specimens and identification of microbial isolates can be done safely at Biosafety Level 2. A primary barrier, such as a biological safety cabinet, should be used:

- When it is anticipated that splashing, spraying or splattering of clinical materials may occur.
- For initial processing of clinical specimens where it is suggested that an agent transmissible by infectious aerosols may be present (e.g., *M. tuberculosis*).
- To protect the integrity of the specimen.

All laboratory personnel who handle human source materials are required to comply with the OSHA bloodborne pathogens standard as stated in the Exposure Control Plan. Universal precautions must be followed when handling human blood, blood products, body fluids or tissues.

The segregation of clinical laboratory functions and restricting access to specific areas is the responsibility of the laboratory director. It is also the director's responsibility to establish standard, written procedures that address the potential hazards and the required precautions to be implemented. The Supplement Exposure Control Plan must be completed for each laboratory and be available to all lab workers.
4.6 Characteristics of Biohazardous Agents

Classification of Risk Groups

The principal hazardous characteristics of an agent are:
1. its capability to infect and cause disease in a susceptible human or animal host;
2. its virulence as measured by the severity of disease;
3. the availability of preventive measures and effective treatments for the disease;

The World Health Organization (WHO) has recommended an agent risk group classification for laboratory use that describes four general risk groups based on these principal characteristics and the route of transmission of the natural disease. The four groups address the risk to both the laboratory worker and the community.

The NIH Guidelines established a comparable classification and assigned human etiological agents into four risk groups on the basis of hazard.

The descriptions of the WHO and NIH risk group classifications are presented in the following Table 1. They correlate with but do not equate to biosafety levels.

A risk assessment will determine the degree of correlation between an agent’s risk group classification and biosafety level.
Table 1: Classification of Infectious Microorganisms by Risk Group

BMBL 5th Edition, December 2009

|---------------------------|--|---|----------|
| Risk Group 1 | Agents not associated with disease in healthy adult humans | (No or low individual and community risk) A microorganism unlikely to cause human or animal disease. | *Bacillus subtilis*
AAV type 1-4
E. coli-no O antigen
E. coli K12 |
| Risk Group 2 | Agents associated with human disease that is rarely serious and for which preventive or therapeutic interventions are *often* available. | (Moderate individual risk; low community risk) A pathogen that can cause human or animal disease but is unlikely to be a serious hazard to laboratory workers, the community, livestock or the environment. Laboratory exposures may cause serious infection, but effective treatment and preventive measures are available and the risk of spread of infection is limited. | *Bacillus anthracis*
Burkholderia (formerly *Pseudomonas* species)
Escherichia coli - all enteropathogenic, enterotoxigenic, enteroinvasive and strains bearing K1 antigen, including *E. coli O157:H7*
Blastomyces dermatitidis
Entamoeba histolytica
Adenoviruses all humans
Herpesviruses - except Monkey B virus
Hepatitis A, B, C, D, E
Rabies virus - all strains |
| Risk Group 3 | Agents associated with serious or lethal human disease for which preventive or therapeutic interventions may be available (high individual risk but low community risk). | (High individual risk; low community risk) A pathogen that usually causes serious human or animal disease but does not ordinarily spread from one infected individual to another. Effective treatment and preventive measures are available. | No Risk group 3 is use at the UMass Lowell |
| Risk Group 4 | Agents likely to cause serious or lethal human disease for which preventive or therapeutic interventions are not usually available (high individual risk and high community risk). | (High individual and community risk) A pathogen that usually causes serious human or animal disease and can be readily transmitted from one individual to another, directly or indirectly. Effective treatment and preventive measures are not usually available. | At the present, the State of Massachusetts doesn’t allow work with Risk 4 group agents |
5. Principles of Biosafety

5.1 Containment

The term "containment" is used in describing safe methods for managing infectious agents in the laboratory environment where they are being handled or maintained. The purpose of containment is to reduce or eliminate exposure of laboratory workers, other people and the outside environment to potentially hazardous agents. The three elements of containment include laboratory practice and technique, safety equipment, and facility design.

Primary containment, the protection of personnel and the immediate laboratory environment from exposure to infectious agents, is provided by good microbiological technique and the use of appropriate safety equipment. The use of vaccines may provide an increased level of personal protection.

Secondary containment, the protection of the environment external to the laboratory from exposure to infectious materials, is provided by a combination of facility design and operational practices. The risk assessment of the work to be done with a specific agent will determine the appropriate combination of these elements.

Laboratory Practice and Technique

The most important element of containment is strict adherence to standard microbiological practices and techniques. Persons working with infectious agents or infected materials must be aware of potential hazards, and must be trained and proficient in the practices and techniques required for handling such material safely. The PI or laboratory supervisor is responsible for providing or arranging for appropriate training of personnel.

Each laboratory should develop an operational manual which identifies specific hazards that will or may be encountered, and which specifies practices and procedures designed to minimize or eliminate risks. Personnel should be advised of special hazards and should be required to read and to follow the required practices and procedures. A scientist trained and knowledgeable in appropriate laboratory techniques, safety procedures and hazards associated with the handling of infectious agents must direct laboratory activities.

When standard laboratory practices are not sufficient to control the hazard associated with a particular agent or laboratory procedure, additional measures may be needed. The PI is responsible for selecting additional safety practices, which must be in keeping with the hazard associated with the agent or procedure.

Laboratory personnel safety practices and techniques must be supplemented by appropriate facility design and engineering features, safety equipment and management practices.
Safety Equipment (Primary Barriers)

Safety equipment includes biological safety cabinets, enclosed containers and other engineering controls designed to remove or minimize exposures to hazardous biological materials. The biological safety cabinet (BSC) is the principal device used to provide containment of infectious splashes or aerosols generated by many microbiological procedures.

Safety equipment also may include items for personal protection such as personal protective clothing, respirators, face shields, safety glasses or goggles. Personal protective equipment is often used in combination with other safety equipment when working with biohazardous materials. In some situations, personal protective clothing may form the primary barrier between personnel and the infectious materials.

Facility Design (Secondary Barriers)

The design of a facility is important in providing a barrier to protect people working inside and outside the laboratory, and to protect people or animals in the community from infectious agents which may be accidentally released from the laboratory. Facilities must be commensurate with the laboratory's function and the recommended biosafety level for the agent being manipulated.

The recommended secondary barrier(s) will depend on the risk of transmission of specific agents. For example, the exposure risks for most laboratory work in Biosafety Level 1 and 2 facilities will be direct contact with the agents, or inadvertent contact exposures through contaminated work environments. Secondary barriers in these laboratories may include separation of the laboratory work area from public access, availability of a decontamination facility (e.g., autoclave) and hand washing facilities.

As the risk for aerosol transmission increases, higher levels of primary containment and multiple secondary barriers may become necessary to prevent infectious agents from escaping into the environment. Such design features could include specialized ventilation systems to assure directional airflow, air treatment systems to decontaminate or remove agents from exhaust air, controlled access zones, airlocks at laboratory entrances, or separate buildings or modules for isolation of the laboratory.
5.2 Biosafety Levels

There are four biosafety levels (BLs) which consist of combinations of laboratory practices and techniques, safety equipment, and laboratory facilities. Each combination is specifically appropriate for the operations performed the documented or suspected routes of transmission of the infectious agents, and for the laboratory function or activity. The recommended biosafety level for an organism represents the conditions under which the agent can be ordinarily handled safely.

Biosafety Level 1 is appropriate for work done with defined and characterized strains of viable microorganisms not known to cause disease in healthy adult humans. It represents a basic level of containment that relies on standard microbiological practices with no special primary or secondary barriers recommended, other than a sink for hand washing.

Biosafety Level 2 is applicable to work done with a broad spectrum of indigenous moderate-risk agents present in the community and associated with human disease of varying severity. Agents can be used safely on the open bench, provided the potential for producing splashes or aerosols is low. Primary hazards to personnel working with these agents relate to accidental percutaneous or mucous membrane exposures or ingestion of infectious materials. Procedures with high aerosol or splash potential must be conducted in primary containment equipment such as biosafety cabinets. Primary barriers such as splash shields face protection, gowns and gloves should be used as appropriate. Secondary barriers such as hand washing and waste decontamination facilities must be available.

Biosafety Level 3 is applicable to work done with indigenous or exotic agents with a potential for respiratory transmission and which may cause serious and potentially lethal infection. Primary hazards to personnel working with these agents (i.e., *Mycobacterium tuberculosis*, St. Louis encephalitis virus and *Coxiella burnetii*) include autoinoculation, ingestion and exposure to infectious aerosols. Greater emphasis is placed on primary and secondary barriers to protect personnel in adjoining areas, the community and the environment from exposure to infectious aerosols. For example, all laboratory manipulations should be performed in biological safety cabinet or other enclosed equipment. Secondary barriers include controlled access to the laboratory and a specialized ventilation system that minimizes the release of infectious aerosols from the laboratory.

Biosafety Level 4 is applicable for work with dangerous and exotic agents which pose a high individual risk of life-threatening disease, which may be transmitted via the aerosol route and for which there is no available vaccine or therapy. Agents with close or identical antigenic relationship to Biosafety Level 4 agents should also be handled at this level. Primary hazards to workers include respiratory exposure to infectious aerosols, mucous membrane exposure to infectious droplets and autoinoculation. All manipulations of potentially infected materials and isolates pose a high risk of exposure and infection to personnel, the community and the environment. Isolation of aerosolized infectious materials is accomplished primarily.
by working in a Class III biological safety cabinet or a full-body, air-supplied positive pressure personnel suit. The facility is generally a separate building or a completely isolated zone within a complex with specialized ventilation and waste management systems to prevent release of viable agents to the environment.

The essential elements of the four biosafety levels for activities involving infectious microorganisms are summarized in Table 1: The levels are designated in ascending order, by degree of protection provided to personnel, the environment and the community. However a safety analysis and a risk assessment of the whole job should be performed by the Biosafety Officer. Complete descriptions of Biosafety Levels 1 through 3 may be found in the **Appendix G of the NIH Guidelines**.

5.3 Vertebrate Animal Biosafety Levels

There are four animal biosafety levels for experiments on animals infected with agents which produce or may produce human infection.

There are four animal biosafety levels, designated Animal Biosafety Level 1 through 4, for work with infectious agents in mammals. The levels are combinations of practices, safety equipment and facilities for experiments on animals infected with agents which produce or may produce human infection. In general, the biosafety level recommended for working with an infectious agent in vivo and in vitro is comparable. As with Biosafety Levels, increasing levels of protection to personnel and the environment are provided as the order ascends.

Summaries of Biosafety Levels and Animal Biosafety Levels may be found in Tables 2 and 3. Complete descriptions of Animal Biosafety Levels 1 through 3 may be found in **Appendix Q of the NIH Guidelines**

The State of Massachusetts **does not permit work at BSL-4 or ABSL-4**. At the UMass Lowell, there is not work done at BSL-3 or ABS-3.
Table 2

Recommended Biosafety Levels for the use of Infectious Agents

<table>
<thead>
<tr>
<th>Biosafety Level</th>
<th>Agents</th>
<th>Practices</th>
<th>Safety Equipment (Primary Barriers)</th>
<th>Facilities (Secondary barriers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSL-1</td>
<td>Not known to cause disease in healthy adults</td>
<td>Standard microbiological practices</td>
<td>None required</td>
<td>Open bench-top and sink required</td>
</tr>
<tr>
<td>BSL-2</td>
<td>Associated with human disease. Route of exposure: autoinoculation, ingestion, mucous membrane exposure</td>
<td>BL-1 practices plus: limited access biohazard warning signs sharps precautions biosafety manual defining waste decontamination or medical surveillance policies</td>
<td>Primary barriers: Class I or II biosafety cabinets or other physical containment devices used for all manipulations of agents that cause splashes or aerosols of infectious materials; PPE: laboratory coats, gloves, face protection as needed</td>
<td>BL-1 Facility plus: autoclave available</td>
</tr>
<tr>
<td>*BSL-3</td>
<td>Indigenous or exotic agents with potential for aerosol transmission; disease may have serious or lethal consequences</td>
<td>BL-2 practices plus: controlled access Decontamination of all waste. Decontamination of clothing before laundering Baseline serum recommended</td>
<td>BL2-equipment plus: Primary barriers: Class I or II biosafety cabinets or other physical containment devices used for all manipulations of agents; PPE: protective lab clothing, gloves, respiratory protection as needed</td>
<td>BL-2 plus: physical separation form access corridors self-closing, double door access exhausted air not recirculated negative airflow into laboratory</td>
</tr>
</tbody>
</table>

At UMass Lowell there are not BSL-3 or ABSL-3 Laboratories.
Table 2 (continuation)

The following characteristics are for general information purposes only. At the present, the State of Massachusetts does not allow any work at BSL-4 or ABSL-4.

<table>
<thead>
<tr>
<th>Biosafety Level</th>
<th>Agents</th>
<th>Practices</th>
<th>Safety Equipment (Primary Barriers)</th>
<th>Facilities (Secondary barriers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSL-4</td>
<td>Dangerous/exotic agents which pose high risk of life-threatening disease, aerosol-transmitted lab infections; or related agents with unknown risk of transmission</td>
<td>BL-3 practices plus: entrances through change rooms where personal clothing is removed and laboratory clothing is put on; shower on exiting all material must be are decontaminated before removal from the facility</td>
<td>BL-3 equipment plus: maximum containment equipment (i.e. Class III biosafety cabinet or partial containment equipment in combination with full body, air-supplied positive-pressure personnel suit) used for all procedures and activities</td>
<td>BL-3 facility plus: separate building or isolated zone dedicated supply/exhaust, vacuum and decontaminate system</td>
</tr>
</tbody>
</table>
Table 3

Recommended Biosafety Levels for Activities Using Infected Vertebrate Animals

<table>
<thead>
<tr>
<th>Animal Biosafety Level</th>
<th>Agents</th>
<th>Practices</th>
<th>Safety Equipment (Primary Barriers)</th>
<th>Facilities (Secondary Barriers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSL-1</td>
<td>Not known to cause disease in healthy adults</td>
<td>Standard animal care and management practices, including appropriate medical surveillance programs</td>
<td>As required for normal care of each species</td>
<td>Standard animal facility non-recirculation of exhaust air directional air flow recommended</td>
</tr>
<tr>
<td>ABSL-2</td>
<td>Associated with human disease. Hazard: autoinoculation, ingestion, mucous membrane exposure</td>
<td>ABL-1 practices plus: limited access biohazard warning signs sharps precautions biosafety manual decontamination of all infectious wastes and of animal cages prior to washing</td>
<td>ABL-1 equipment plus primary barriers: containment equipment appropriate for animal species; PPE: laboratory coats, gloves, face and respiratory protection as needed</td>
<td>ABL-1 Facility plus: autoclave available hand washing sink available in the animal room</td>
</tr>
<tr>
<td>*ABSL-3</td>
<td>Indigenous or exotic agents with potential for aerosol transmission; disease may have serious or lethal consequences</td>
<td>ABL-2 practices plus: controlled access decontamination of clothing before laundering cages should be decontaminated before bedding removed</td>
<td>ABL-2 equipment plus: containment equipment for housing animals and cage dumping activities Class I or II BSC available for procedures as (inoculation, necropsy) that may create infectious aerosols. PPE: appropriate respiratory protection</td>
<td>ABL-2 facility plus: physical separation from access corridors self-closing, double door access sealed penetrations sealed windows autoclave available in facility</td>
</tr>
</tbody>
</table>

At UMass Lowell there are not BSL-3 or ABSL-3 Laboratories.
Table 3 (continuation)

The follow characteristics are for information purposes only. There are not BSL-4 or ABSL-4 in the State of Massachusetts

<table>
<thead>
<tr>
<th>Animal Biosafety Level</th>
<th>Agents</th>
<th>Practices</th>
<th>Safety Equipment (Primary Barriers)</th>
<th>Facilities (Secondary barriers)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSL-4</td>
<td>Dangerous/exotic agents which pose high risk of life-threatening disease, aerosol-transmitted lab infections; or related agents with unknown risk of transmission</td>
<td>ABL-3 practices plus: entrances through change rooms where personal clothing is removed and laboratory clothing is put on; shower on exiting all wastes are decontaminated before removal from the facility</td>
<td>ABL-3 equipment plus: maximum containment equipment (i.e. Class III biosafety cabinet or partial containment equipment in combination with full body, air-supplied positive-pressure personnel suit) used for all procedures and activities</td>
<td>ABL-3 facility plus: separate building or isolated zone dedicated supply/exhaust, vacuum and decontaminate system</td>
</tr>
</tbody>
</table>
6. Practices and Procedures

6.1 Administrative Controls

6.1.1. Biohazard Warning Signs and Posting

Each laboratory must have a room sign that provides safety information to visitors and service personnel. Room signs must contain designations for all laboratory hazards in use within the laboratory (carcinogens, acutely toxic agents, reproductive hazards, biohazards, radioactive materials, lasers and magnetic fields). Contact the Biosafety Officer or EHS for more information.

- All areas and laboratories which contain biohazardous agents must be posted with a biohazard sign. The sign must be red/orange in color with a biohazard symbol and lettering in black.

6.1.4. Medical Surveillance

- A medical surveillance program will be provided for those personnel having substantial direct animal contact through Health Resources.
- Vaccines for which the benefits (levels of antibody considered to be protective) clearly exceed the risk (local or systemic reactions) will be offered to all clearly identify at-risk personnel, because immuno-prophylaxis may provide an additional level of protection.
- A medical surveillance program will be provided through the Occupational Wellness Center at Saints Memorial Hospital for those personnel who are occupationally at-risk of exposure to bloodborne pathogens. The program includes free Hepatitis B vaccination, post-exposure evaluation and follow-up. For a more detailed explanation of this program, consult the UMass Lowell Exposure Control Plan; call EHS or the Biosafety Officer.

6.2 Engineering Controls

6.2.1. Biological safety cabinets (BSCs).

BSCs are designed to contain aerosols generated during work with infectious material through the use of laminar air flow and high efficiency particulate air (HEPA) filtration. Three types of BSCs (Class I, II and III) are used in microbiological laboratories. Open-fronted Class I and Class II BSCs are partial containment devices which provide a primary barrier offering significant levels of protection to laboratory personnel and to the environment when used in combination with good microbiological techniques.

The Class I BSC is suitable for work involving low to moderate risk agents, where there is a need for containment, but not for product protection. It provides protection to personnel and the environment from contaminants within the cabinet. The Class I BSC does not protect the product from "dirty" room air.
The **Class II BSC** protects the material being manipulated inside the cabinet (e.g., cell cultures, microbiological stocks) from external contamination. It meets requirements to protect personnel, the environment and the product. There are three basic types of Class II BSCs: Type A, Type B and 100% Exhaust. The major differences between the three types may be found in the percent of air that is exhausted or recirculated, and the manner in which exhaust air is removed from the work area.

The gas-tight **Class III BSC** or glove box provides the highest attainable level of protection to personnel, the environment and the product. It is the only cabinetry which provides a total physical barrier between the product and personnel. It is for use with **high risk** biological agents and is used when absolute containment of highly infectious or hazardous material is required.

It is important to note that laminar flow clean benches must not be utilized for work with biohazardous or chemically hazardous agents. Clean benches provide product protection by ensuring that the product is exposed only to HEPA-filtered air. They do not provide protection to personnel or the ambient environment.

6.2.2. Safety equipment

Safety equipment includes items for personal protection such as gloves, coats, gowns, shoe covers, boots, respirators, face shields, safety glasses or goggles. Personal protective equipment (PPE) is often used in combination with BSCs and other devices which contain the biohazardous agents, animals or materials. When it is impractical to work in BSCs, PPE may form the primary barrier between personnel and infectious materials. Examples include certain animal studies, animal necropsy, agent production activities and activities relating to maintenance, service or support of the laboratory facility.

Other safety equipment such as safety centrifuge cups and safety blenders are enclosed containers designed to prevent aerosols from being released during centrifugation or homogenization of infectious material.

Containment controls such as BSCs, safety centrifuge cups and blenders must be used for handling infectious agents that can be transmitted through the aerosol route of exposure. A description of effective use of BSCs and information on other safety equipment may be found in the Recommended Work Practices below.

Additional information on the proper use and selection of a BSC can be found on Appendix A of 5th Edition of Biosafety in Microbiological and Biomedical Laboratories.

6.3 Recommended Work Practices
6.3.1. Standard Microbiological Practices

- Access to the laboratory is limited or restricted at the discretion of the Principal Investigator when experiments are in progress;
- Work surfaces are decontaminated once a day and after any spill of viable material;
- All contaminated liquid or solid wastes are decontaminated before disposal;
- Mechanical pipetting devices are used; mouth pipetting is prohibited;
- Eating, drinking, smoking, and applying cosmetics are not permitted in the work area. Food may be stored in cabinets or refrigerators designated and used for this purpose only;
- Persons wash their hands:
 - (i) after they handle materials involving organisms containing infections materials, recombinant DNA molecules or animals, and
 - (ii) before exiting the laboratory;
- All procedures are performed carefully to minimize the creation of aerosols;
- In the interest of good personal hygiene, facilities (e.g., hand washing sink, shower, and changing room) and protective clothing (e.g., uniforms, laboratory coats) shall be provided that are appropriate for the risk of exposure to viable organisms containing recombinant DNA molecules;
- Contaminated materials that are to be decontaminated at a site away from the laboratory are placed in a durable leak-proof container which is closed before being removed from the laboratory;
- An insect and rodent control program is in effect.

6.3.2. Use of Pipettes and Pipetting Aids

Pipettes are used for volumetric measurements and transfer of fluids that may contain infectious, toxic, corrosive or radioactive agents. Laboratory associated infections have occurred from oral aspiration of infectious materials, mouth transfer via a contaminated finger and inhalation of aerosols. Exposure to aerosols may occur when liquid from a pipette is dropped onto the work surface, when cultures are mixed by pipetting, or when the last drop of an inoculum is blown out. A pipette may become a hazardous piece of equipment if improperly used. The safe pipetting techniques which follow are required to minimize the potential for exposure to hazardous materials.

- Never mouth pipette. Always use a pipetting aid.
- If working with biohazardous or toxic fluid, confine pipetting operations to a biosafety cabinet.
- Always use cotton plugged pipettes when pipetting biohazardous or toxic materials, even when safety pipetting aids are used.
- Do not prepare biohazardous materials by bubbling expiratory air through a liquid with a pipette.
- Do not forcibly expel biohazardous material out of a pipette.
- Never mix biohazardous or toxic material by suction and expulsion through a pipette.
- When pipetting, avoid accidental release of infectious droplets. Place a disinfectant soaked towel on the work surface and autoclave the towel after use.
- Use "to deliver" pipettes rather than those requiring "blowout".
• Do not discharge material from a pipette at a height. Whenever possible allow the discharge to run down the container wall.
• Place contaminated, reusable pipettes horizontally in a pan containing enough liquid disinfectant to completely cover them. Do not place pipettes vertically into a cylinder. Autoclave the pan and pipettes as a unit before processing them for reuse.
• Discard contaminated disposable pipettes in an appropriate sharps container.
• Pans or sharps containers for contaminated pipettes should be placed inside the biosafety cabinet, if possible.

6.3.3. Use of Syringes and Needles

Syringes and hypodermic needles are dangerous instruments. The use of needles and syringes should be restricted to procedures for which there is no alternative. Blunt cannulas should be used as alternatives to needles wherever possible (i.e., procedures such as oral or intranasal animal inoculations). Needles and syringes should never be used as a substitute for pipettes. When needles and syringes must be used, the following procedures are recommended:

• Use disposable needle locking syringe units whenever possible.
• When using syringes and needles with biohazardous or potentially infectious agents:
 • Work in a biosafety cabinet whenever possible.
 • Wear gloves.
 • Fill the syringe carefully to minimize air bubbles.
 • Expel air, liquid and bubbles from the syringe vertically into a cotton moistened with disinfectant.
 • Do not use a syringe to mix infectious fluid forcefully.
 • Do not contaminate the needle hub when filling the syringe in order to avoid transfer of infectious material to fingers.
 • Wrap the needle and stopper in cotton moistened with disinfectant when removing a needle from a rubber-stoppered bottle.
• Bending, recapping, clipping or removal of needles from syringes is prohibited. If it is essential that a contaminated needle be recapped or removed from a syringe, the use of a mechanical device or the one handed scoop method must be used. The use of needle nipping devices is prohibited and the devices must be discarded as infectious waste.
• Use a separate pan of disinfectant for reusable syringes and needles. Do not place them in pans containing pipettes or other glassware in order to eliminate sorting later.
• Used disposable needles and syringes must be placed in appropriate sharps disposal containers and discarded as infectious waste.

6.3.4. Safe and Effective Use of Biosafety Cabinets (BSC)
The follow are the general practice when working in a BSC

- Make sure your BSC is certified when it is installed or after it is moved, and annually thereafter. (For information on cabinet certification call EHS at 934-2618);
- Understand how your cabinet works;
- Do not disrupt the protective airflow pattern of the BSC. Such things as rapidly moving your arms in and out of the cabinet, people walking rapidly behind you, and open lab doors may disrupt the airflow pattern and reduce the effectiveness of the BSC;
- Plan your work;
- Minimize the storage of materials in and around the BSC;
- Always leave the BSC running during use;
- Before using, wipe work surface with 70% alcohol. Wipe off each item you need for your procedures and place in cabinet.
- DO NOT place objects over the front air intake grille. DO NOT block the rear exhaust grille.
- Segregate contaminated and clean items. Work from "clean to dirty".
- Place a pan with disinfectant and/or a sharps container inside the BSC for pipette discard. DO NOT use vertical pipette discard canisters on the floor outside cabinet.
- It is not necessary to flame items. This creates turbulence in airflow and will compromise sterility; heat buildup may damage the filters.
- Move arms slowly when removing or introducing new items into the BSC.
- If you use a piece of equipment that creates air turbulence in the BSC (such as a centrifuge, blender) place equipment in the back 1/3 of the cabinet; stop other work while equipment is operating.
- Protect the building vacuum system from biohazards by placing a cartridge filter between the vacuum trap and the source valve in the cabinet.
- Clean up all spills in the cabinet immediately. Wait 10 minutes before resuming work.
- When work is finished remove all materials and clean all interior surfaces with 70% alcohol.
- Remove lab coat and wash hands thoroughly before leaving laboratory.

6.3.5. Use of Cryostats

Frozen sections on unfixed human tissue or animal tissue infected with an etiologic agent pose a risk because accidents can occur. Freezing tissue does not necessarily inactivate infectious agents. Freezing propellants under pressure should not be used for frozen sections as they may cause spattering of droplets of infectious material. Gloves should be worn during preparation of frozen sections. When working with biohazardous material in a cryostat, the following is recommended:

- Consider the contents of the cryostat to be contaminated and decontaminate it frequently with 70% ethanol;
• Consider trimmings and sections of tissue that accumulate in the cryostat to be potentially infectious and remove them during decontamination;
• Defrost and decontaminate the cryostat with a tuberculocidal hospital disinfectant once a week and immediately after tissue known to contain bloodborne pathogens, *M. tuberculosis* or other infectious agents is cut;
• Handle microtome knives with extreme care. Stainless steel mesh gloves should be worn when changing knife blades;
• Consider solutions for staining potentially infected frozen sections to be contaminated.

6.3.6. Use of Centrifuge Equipment

Hazards associated with centrifuging include mechanical failure and the creation of aerosols. To minimize the risk of mechanical failure, centrifuges must be maintained and used according to the manufacturer's instructions. Users should be properly trained and operating instructions that include safety precautions should be prominently posted on the unit.

Aerosols are created by practices such as filling centrifuge tubes, removing plugs or caps from tubes after centrifugation, removing supernatant, and resuspending sedimented pellets. The greatest aerosol hazard is created if a tube breaks during centrifugation. To minimize the generation of aerosols when centrifuging biohazardous material, the following procedures should be followed:

• Use sealed tubes and safety buckets that seal with O-rings. Before use, inspect tubes, O-rings and buckets for cracks, chips, erosions, bits of broken glass, etc. Do not use aluminum foil to cap centrifuge tubes because it may detach or rupture during centrifugation.
• Fill and open centrifuge tubes, rotors and accessories in a BSC. Avoid overfilling of centrifuge tubes so that closures do not become wet. After tubes are filled and sealed, wipe them down with disinfectant.
• Add disinfectant to the space between the tube and the bucket to disinfect material in the event of breakage during centrifugation.
• Always balance buckets, tubes and rotors properly before centrifugation.
• Do not decant or pour off supernatant. Use a vacuum system with appropriate in-line reservoirs and filters. (For more information, call EHS.)
• Work in a BSC when resuspending sedimented material. Use a swirling rotary motion rather than shaking. If shaking is necessary, wait a few minutes to permit the aerosol to settle before opening the tube.
• Small low-speed centrifuges may be placed in a BSC during use to reduce the aerosol escape. High-speed centrifuges pose additional hazards. Precautions should be taken to filter the exhaust air from vacuum lines, to avoid metal fatiguing resulting in disintegration of rotors and to use proper cleaning techniques and centrifuge components. Manufacturers' recommendations
must be meticulously followed to avoid metal fatigue, distortion and corrosion;

- Avoid the use of celluloid (cellulose nitrate) tubes with biohazardous materials. Celluloid centrifuge tubes are highly flammable and prone to shrinkage with age. They distort on boiling and can be highly explosive in an autoclave. If celluloid tubes must be used, an appropriate chemical disinfectant must be used to decontaminate them.

6.3.7. Use of Blenders, Ultrasonic Disrupters, Grinders and Lyophilizers

The use of any of these devices results in considerable aerosol production. Blending, cell-disrupting and grinding equipment should be used in a BSC when working with biohazardous materials.

Safety blenders, although expensive, are designed to prevent leakage from the bottom of the blender jar, provide a cooling jacket to avoid biological inactivation and to withstand sterilization by autoclaving. If blender rotors are not leak proof, they should be tested with sterile saline or dye solution prior to use with biohazardous material. The use of glass blender jars is not recommended because of the breakage potential. If they must be used, glass jars should be covered with a polypropylene jar to prevent spraying of glass and contents in the event the blender jar breaks. A towel moistened with disinfectant should be placed over the top of the blender during use. Before opening the blender jar, allow the unit to rest for at least one minute to allow the aerosol to settle. The device should be decontaminated promptly after use.

Lyophilizers and ampoules. Depending on lyophilizer design, aerosol production may occur when material is loaded or removed from the lyophilizer unit. If possible, sample material should be loaded in a BSC. The vacuum pump exhaust should be filtered to remove any hazardous agents or, alternatively, the pump can be vented into a BSC. After lyophilization is completed, all surfaces of the unit that have been exposed to the agent should be disinfected. If the lyophilizer is equipped with a removable chamber, it should be closed off and moved to a BSC for unloading and decontamination. Handling of cultures should be minimized and vapor traps should be used wherever possible.

Opening ampoules containing liquid or lyophilized culture material should be performed in a BSC to control the aerosol produced. Gloves must be worn. To open, nick the neck of the ampoule with a file, wrap it in disinfectant soaked towel, hold the ampoule upright and snap it open at the nick. Reconstitute the contents of the ampoule by slowly adding liquid to avoid aerosolization of the dried material. Mix the contents without bubbling and withdraw it into a fresh container. Discard the towel and ampoule top and bottom as infectious waste.

Ampoules used to store biohazardous material in liquid nitrogen have exploded causing eye injuries. The use of polypropylene tubes eliminates this hazard. These
tubes are available dust-free or pre-sterilized and are fitted with polyethylene caps with silicone washers. Heat sealable polypropylene tubes are also available.

6.3.8. Loop Sterilizers and Bunsen Burners

Sterilization of inoculating loops or needles in an open flame generates small-particle aerosols which may contain viable microorganisms. The use of a shielded electric incinerator minimizes aerosol production during loop sterilization. Alternatively, disposable plastic loops and needles may be used for culture work where electric incinerators or gas flames are not available. The loops are semi-quantitative and can be used for counting bacteria.

Continuous flame gas burners should not be used in BSCs. These burners can produce turbulence which disturbs the protective airflow patterns of the cabinet. Additionally, the heat produced by the continuous flame may damage the HEPA filter. If a gas burner must be used, one with a pilot light should be selected.

6.4. Laundry

All personal protective clothing must be cleaned, laundered and disposed of by the employer at no cost to employees. Apparel contaminated with blood or other potentially infectious materials should be handled as little as possible and decontaminated, preferably by autoclaving, before being sent to the laundry for cleaning. Appropriate PPE must be worn by employees who handle contaminated laundry.

6.5. Housekeeping

Good housekeeping in laboratories is essential to reduce risks and protect the integrity of biological experiments. Routine housekeeping must be relied upon to provide work areas free of significant sources of contamination. Housekeeping procedures should be based on the highest degree of risk to which personnel and experimental integrity may be subjected.

Laboratory personnel are responsible to clean laboratory benches, equipment and areas that require specialized technical knowledge. Additional laboratory housekeeping concerns include:

- Keeping the laboratory neat and free of clutter - surfaces should be clean and free of infrequently used chemicals, glassware and equipment. Access to sinks, eyewashes, emergency showers and fire extinguishers must not be blocked.
- Proper disposal of chemicals and wastes - old and unused chemicals should be disposed of promptly and properly. Call EHS at 934-2618 for details.
- Providing a workplace that is free of physical hazards - aisles and corridors should be free of tripping hazards. Attention should be paid to electrical safety, especially as it relates to the use of extension cords, proper
grounding of equipment, and avoidance of overloaded electrical circuits and avoidance of the creation of electrical hazards in wet areas.

- Removing unnecessary items on floors, under benches or in corners.
- Properly securing all compressed gas cylinders.
- Never using fume hoods for storage of chemicals or other materials.

6.5.1. **Practical custodial concerns include:**

- Dry sweeping and dusting which may lead to the formation of aerosols is not permitted.
- The usual wet or dry industrial type vacuum cleaner is a potent aerosol generator and, unless equipped with high efficiency particulate air (HEPA) filter, must not be used in the biological research laboratory. Their use is prohibited to protect personnel as well as the integrity of the experiment. Wet and dry units with HEPA filters on the exhaust are available from a number of manufacturers.
7. Personal Protective Equipment (PPE)

PPE is used to protect personnel from contact with hazardous materials and infectious agents. Appropriate clothing may also protect the experiment from contamination. PPE must be provided without cost to personnel. The following PPE is recommended for regular use:

7.1 Face Protection

Goggles or safety glasses with solid side shields in combination with masks, or chin length face shields or other splatter guards are required for anticipated splashes, sprays or splatters of infectious or other hazardous materials to the face. Information on the availability of low cost prescription safety eyewear may be obtained by calling EHS at 934-2618. Wearing of contact lenses is inappropriate in the laboratory setting.

7.2 Laboratory Clothing

This category includes: laboratory coats, smocks, scrub suits, and gowns. Long sleeved garments should be used to minimize the contamination of skin or street clothes and to reduce shedding of microorganisms from the arms. In circumstances where it is anticipated that splashes may occur, the garment must be resistant to liquid penetration to protect clothing from contamination. If the garment is not disposable, it must be capable of withstanding sterilization, in the event it becomes contaminated. Additional criteria for selecting clothing are: comfort, appearance, closure types and location, antistatic properties and durability. Protective clothing must be removed and left in the laboratory before leaving for non-laboratory areas. Disposables should be available for visitors, maintenance and service workers in the event it is required. All protective clothing should be either discarded in the laboratory or laundered by the facility. Personnel must not launder laboratory clothing at home.

7.3 Gloves

These must be selected based on the hazards involved and the activity to be conducted. Gloves must be worn when working with biohazards, toxics and other physically hazardous agents. Temperature resistant gloves must be worn when handling hot material or dry ice. Delicate work requiring a high degree of precision dictates the use of thin walled gloves. Protection from contact with toxic or corrosive chemicals may also be required. For assistance in glove selection, call EHS at 934-2618.

When working with hazardous materials, the lower sleeve and the cuff of the laboratory garment should be overlapped by the glove. A long sleeved glove or disposable arm-shield may be worn for further protection of the garment.
In some instances double gloving may be appropriate. If a spill occurs, hands will be protected after the contaminated outer gloves are removed. Gloves must be disposed of when contaminated, removed when work with infectious materials is completed and not worn outside the laboratory. Disposable gloves must not be washed or reused.

7.4 Respirators

In certain instances additional PPE may be required. Respirator selection is based on the hazard and the protection factor required. Personnel who require respiratory protection must contact EHS for assistance in selection of equipment and training in its proper usage. Additional Information on Respirators can be found in the Chemical Hygiene Plan. Contact de Biosafety Officer/EHS for assistance in selection of other personal protective equipment as well.
8. Biohazard Spill Clean-Up Procedures

8.1 Spill Clean-up

8.1.2. Inside the BSC

• Wear lab coat, safety glasses and gloves during cleanup.
• Allow cabinet to run during cleanup.
• Apply disinfectant and allow a minimum of 20 minutes contact time.
• Wipe up spillage with disposable disinfectant-soaked cloth.
• Wipe the walls, work surface and any equipment in the cabinet with a disinfectant-soaked cloth.
• Discard contaminated disposable materials in appropriate biohazardous waste container(s) and autoclave before discarding as infectious waste.
• Place contaminated reusable items in biohazard bags, autoclavable pans with lids or wrap in newspaper before autoclaving and cleanup.
• Expose non-autoclavable materials to disinfectant, 20 minute contact time, before removal from the BSC.
• Remove protective clothing used during cleanup and place in a biohazard bag for autoclaving.
• Run cabinet 10 minutes after cleanup before resuming work or turning cabinet off.

8.1.2. In the lab, outside the BSC:

• Clear area of all personnel. Wait for aerosol to settle before entering spill area.
• Remove any contaminated clothing and place in biohazard bag to be autoclaved.
• Wear a disposable gown, safety glasses and gloves during clean-up.
• Initiate cleanup with disinfectant as follows:

 1. Soak paper towels in disinfectant and place over spill.
 2. Encircle the spill with additional disinfectant being careful to minimize aerosolization while assuring adequate contact.
 3. Decontaminate all items within the spill area.
 4. Allow 20 minutes contact time to ensure germicidal action of disinfectant.
 5. Wipe equipment with 1:10 bleach followed by water then 70% alcohol.
 6. Place disposable contaminated spill materials in appropriate biohazardous waste container(s) for autoclaving.
 7. Place contaminated reusable items in biohazard bags, autoclavable pans with lids or wrap in newspaper before autoclaving and cleanup.
8.1.3. Inside Centrifuge

- Clear area of all personnel. Wait 30 minutes for aerosol to settle before attempting to clean up spill.
- Wear a lab coat, safety glasses and gloves during cleanup.
- Remove rotors and buckets to nearest biological safety cabinet for cleanup.
- Thoroughly disinfect inside of centrifuge.
- Remove contaminated debris after disinfection, place in appropriate biohazardous waste container(s) and autoclave before disposal as infectious waste.

8.1.4. Outside lab, during transport

- Transport biohazardous material in an unbreakable well-sealed primary container placed inside of a second unbreakable lidded container labeled with the biohazard symbol (cooler, plastic pan or pail).
- Should a spill occur in a public area, do not attempt to clean it up without appropriate personal protective equipment.
- As an interim measure, wear gloves and place paper towels, preferable soaked in disinfectant, directly on spilled materials to prevent spread of contamination. To assure adequate contact, surround the spill with disinfectant, if available, taking care to minimize aerosols.
- Call EHS at 934-2618 to assist in cleanup.
9. Decontamination

Decontamination is a term used to describe a process or treatment that renders a medical device, instrument, or environmental surface safe to handle. A decontamination procedure can range from sterilization to simple cleaning with soap and water. Sterilization, disinfection and antisepsis are all forms of decontamination.

Sterilization is the use of a physical or chemical procedure to destroy all microbial life, including highly resistant bacterial endospores.

Disinfection eliminates virtually all pathogenic non-spore-forming microorganisms but not necessarily all microbial forms on inanimate objects (work surfaces, equipment, etc.). Effectiveness is influenced by the kinds and numbers of organisms, the amount of organic matter, the object to be disinfected and chemical exposure time, temperature and concentration.

Antisepsis is the application of a liquid antimicrobial chemical to skin or living tissue to inhibit or destroy microorganisms. It includes swabbing an injection site on a person or animal and hand washing with germicidal solutions. Although some chemicals may be utilized as either a disinfectant or an antiseptic, adequacy for one application does not guarantee adequacy for the other. Manufacturers’ recommendations for appropriate use of germicides should always be followed.

9.1. General Procedures

- All infectious materials and all contaminated equipment or apparatus should be decontaminated before being washed, stored or discarded. Autoclaving is the preferred method. Each individual working with biohazardous material should be responsible for its proper handling.
- Biohazardous materials should not be placed in autoclaves overnight in anticipation of autoclaving the next day.
- Autoclaves should not be operated unattended or by untrained personnel.
- Special precautions should be taken to prevent accidental removal of material from an autoclave before it has been sterilized or simultaneous opening of both doors on a double door autoclave.
- Dry hypochlorite, or any other strong oxidizing material, must not be autoclaved with organic materials such as paper, cloth or oil: **OXIDIZER + ORGANIC MATERIAL + HEAT = MAY PRODUCE AN EXPLOSION.**

9.2. Methods

There are four main categories of physical and chemical means of decontamination. They are heat, liquid disinfection, vapors and gases and radiation. Each category is discussed briefly below.
9.2.1 Heat

1. **Wet heat** is the most dependable method of sterilization. Autoclaving (saturated steam under pressure of approximately 15 psi to achieve a chamber temperature of at least 250°F for a prescribed time) is the most convenient method of rapidly achieving destruction of all forms of microbial life. In addition to proper temperature and time, prevention of entrapment of air is critical to achieving sterility. Material to be sterilized must come in contact with steam and heat. Chemical indicators, e.g. autoclave tape, must be used with each load placed in the autoclave. The use of autoclave tape alone is not an adequate monitor of efficacy. Autoclave sterility monitoring should be conducted on a regular basis using appropriate biological indicators *B. stearothermophilus* spore strips placed at locations throughout the autoclave. The spores, which can survive 250°F for 5 minutes but are killed at 250°F in 13 minutes, are more resistant to heat than most microbial forms, thereby providing an adequate safety margin when validating decontamination procedures. Each type of container employed should be spore tested because efficacy varies with the load, fluid volume, etc.

2. **Dry heat** is less efficient than wet heat and requires longer times and/or higher temperatures to achieve sterilization. It is suitable for the destruction of viable organisms on impermeable non-organic surfaces such as glass, but it is not reliable in the presence of shallow layers of organic or inorganic materials which may act as insulation. Sterilization of glassware by dry heat can usually be accomplished at 160-170°C for periods of 2-4 hours. Dry heat sterilizers should be monitored on a regular basis using appropriate biological indicators *B. subtilis globigii* spore strips.

3. **Incineration** is another effective means of decontamination by heat. As a disposal method incineration has the advantage of reducing the volume of the material prior to its final disposal.

9.2.2 Liquid disinfection

The most practical use of liquid disinfectants is for surface decontamination only. When used to decontaminate liquid waste, higher concentrations are necessary to have the final dilution in the adequate concentration to be effective. Liquid disinfectants must be used only in organisms that have been shown to be effective.

Liquid disinfectants are available under a wide variety of trade names. In general, these can be classified as: halogens, acids, alkalis, heavy metal salts, quaternary ammonium compounds, phenolic compounds, aldehydes, ketones, alcohols and amines. The more active a compound is, the more likely it is to have undesirable characteristics such as corrosive. No liquid disinfectant is equally useful or effective under all conditions and for all viable agents.

9.2.3. Vapors and Gases

A variety of vapors and gases possess decontamination properties. Vapors and gases are primarily used to decontaminate biological safety cabinets and associated
systems, bulky or stationary equipment not suited to liquid disinfectants, instruments or optics which might be damaged by other decontamination methods, and rooms, buildings and associated air-handling systems. Agents included in this category are glutaraldehyde and formaldehyde vapor, ethylene oxide gas, peracetic acid (also known as peroxyacetic acid, or PAA) and hydrogen peroxide vapor. When used in closed systems and under controlled conditions of temperature and humidity, excellent disinfection can be obtained. Great care must be taken during use because of the hazardous nature of many of these compounds. Contact EHS for monitoring requirements if these compounds are to be used.

9.2.4. Radiation

Although ionizing radiation will destroy microorganisms, it is not a practical tool for laboratory use. Nonionizing radiation in the form of ultraviolet radiation (UV) is used for inactivating viruses, bacteria and fungi. It will destroy airborne microorganisms and inactivate microorganisms on exposed surfaces or in the presence of products of unstable composition that cannot be treated by conventional means.

Because of the low penetrating power of UV, microorganisms inside dust or soil particles will be protected from its action, limiting its usefulness. UV is used in air locks, animal holding areas, ventilated cabinets and laboratory rooms to reduce levels of airborne microorganisms and maintain good air hygiene. Because UV can cause burns to the eyes and skin of people exposed for even a short period of time, proper shielding should be maintained when it is in use. UV lamps that are used for space decontamination should be interlocked with the general room or cabinet illumination, so that turning on the lights extinguishes the UV.

UV lamps are not recommended for decontamination unless they are properly maintained. Because UV lamp intensity or destructive power decreases with time, it should be checked with a UV meter yearly. Frequent cleaning every few weeks is necessary to prevent accumulation of dust and dirt on the lamp which also reduces its effectiveness drastically. If UV must be used, it should be used when areas are not occupied.

Users must contact The Radiation Safety Department at (934-3372) for approval prior to using any type of UV equipment.
10. Biohazardous Waste Management

Categories of infectious waste as defined by the Commonwealth of Massachusetts, Department of Public Health include:

- **Blood and blood products:** discarded bulk human blood products in free draining, liquid state; body fluids contaminated with visible blood; and materials saturated/dripping with blood.

- **Pathological waste:** human anatomical parts, organs, tissues, and body fluids removed and discarded during surgery or autopsy, or other medical procedures and specimens of body fluids and their containers.

- **Culture and stocks of infectious agents and associated biologicals:** all discarded cultures and stocks of infectious agents and associated biologicals, biotechnological by-product effluents (any discarded preparations made from genetically altered living organisms and their products), cultures of specimens from medical and pathological laboratories, cultures and stocks of infectious agents from research laboratories, wastes from the production of biologicals, and discarded live attenuated vaccines intended for human use.

- **Contaminated animal carcasses, body parts and bedding:** the contaminated carcasses and body parts and bedding of all research animals known to be exposed to pathogens.

- **Sharps:** discarded medical articles that may cause puncture or cuts, including but not limited to all used and discarded hypodermic needles and syringes, Pasteur pipettes, broken medical glassware, scalpel blades, disposable razors, and suture needles.

10.1 Handling

All infectious waste from University laboratories must be autoclaved by the generator prior to disposal in appropriate infectious waste bags with labels. Treatment of infectious waste, other than by autoclaving, must be reviewed by the Environmental Health and Safety Department.

The primary responsibility for identifying and disposing of infectious material rests with principal investigators or laboratory supervisors. This responsibility cannot be shifted to inexperienced or untrained personnel.

Potentially infectious and biohazardous waste must be separated from general waste at the point of generation (i.e., the point at which the material becomes a waste) by the generator into the following three classes as follows:

- Used Sharps
- Autoclavable Material
• Non-Autoclavable Material for Incineration

10.1.1. Used sharps must be segregated into sharps containers that are non-breakable, leak proof, impervious to moisture, rigid, tightly lidded, puncture resistant, red in color and marked with the universal biohazard symbol.

10.1.2. Fluids in volumes greater than 20 cc that are discarded as infectious waste must be segregated in containers that are leak proof, impervious to moisture, break-resistant, tightly lidded or stoppered, red in color and marked with the universal biohazard symbol. To minimize the burden of this waste category, fluids in volumes greater than 20 cc, may be decontaminated (by autoclaving or exposure to an appropriate disinfectant), then flushed into the sanitary sewer system. The pouring of these wastes must be accompanied by large amounts of water. The empty fluid container may be discarded with other infectious waste if it is disposable or autoclaved and washed if reusable.

10.1.3. Other infectious waste must be discarded directly into containers or plastic (polypropylene) autoclave bags which are clearly identifiable and distinguishable from general waste. Containers must be marked with the universal biohazard symbol (Figure 1). Autoclave bags must be distinctly colored red or orange, and marked with the universal biohazard symbol. These bags must not be used for any other materials or purpose.

10.1.4. Decontaminated infectious waste must be put into black plastic bags and labeled appropriately. Infectious waste must be properly packaged prior to off-site transport for destruction and disposal.

For specific information on infectious waste disposal procedures and pickup locations in your facility, call EHS. Any off-site treatment of infectious waste must be coordinated through EHS (978-2618).

10.2 Mixed Waste

Provisions must be made for potentially infectious waste with multiple hazards, e.g., radioactive material contaminated wastes, or wastes substantially contaminated with toxic/carcinogenic compounds. Contact EHS regarding the disposal of these wastes.

10.3 Storage

Infectious waste must not be allowed to accumulate. Contaminated material should be inactivated and disposed of daily or on a regular basis as required. If the storage of contaminated material is necessary, it must be done in a rigid container away from general traffic.

Infectious waste, excluding used sharps, may be stored at room temperature until the storage container is full, but no longer than 30 days from the date of
generation. It may be refrigerated for up to 30 days and frozen for up to 90 days from the date of generation. Infectious waste must be dated when refrigerated or frozen for storage. Storage of infectious waste in a freezer must be approved by EHS.

If infectious waste becomes putrescent during storage it must be moved off site within 24 hours for processing and disposal. Sharps containers may be used until 3/4 full, at which time they must be disposed of as infectious waste.

10.4 Monitoring Treatment of Infectious Waste

Autoclaving of infectious waste should be monitored to assure the efficacy of the treatment method. A log noting the date, test conditions and the results of each test of the autoclave must be kept.

10.5 Animal, animal parts and carcasses

The IBC & EHS must approve the procedure disposal of research animals and animal parts that are considered to be infectious waste.

10.5 Cadavers parts and animal parts embalmed to be used in teaching labs

EHS provides faculty with special containers for dispose of cadaver parts and animal parts embalmed. Faculty should contact in advance EHS to request the containers to be used for teaching labs.
11. Packaging and Shipping of Biomedical Materials

Etiologic agents, infectious materials and vectors that may contain them are recognized by the federal government and state government as hazardous materials. Infectious materials are regularly transported from one location to another by common land and air carriers. Containers of infectious materials must be carefully packaged to prevent leakage or breakage and consequent exposure to package contents. Packaging instructions are provided below.

Packaging and shipping of biomedical material must meet federal requirements. Regulations governing the interstate shipment of etiologic agents are currently under revision. The shipper (i.e., person with direct knowledge of what is being shipped) must be acquainted with the most current requirements. It is the intent of the regulation that biomedical material which may contain etiologic agents will be packaged and shipped in such a way that the contents will not leak and will arrive in good condition.

11.1 Definitions

Biomedical materials that are known to contain or could contain, etiologic agents are divided into two groups: "diagnostic specimens and biological products" and "materials containing certain etiologic agents.

Etiologic agents are those viable microorganisms that cause disease in humans and include bacteria, bacterial toxins, viruses, fungi, rickettsia, protozoans and parasites. These disease-causing microorganisms may also be referred to as infectious agents or infectious substances.

Infectious substances are those substances containing viable microorganisms or their toxins which are known, or are suspected to cause disease in animals or humans.

Diagnostic specimens are any human or animal material including but not limited to, excreta, blood and its components, tissue, tissue fluids, etc., which the shipper reasonably believes may contain an etiologic agent and that is being shipped for purposes of diagnosis.

Biological product means a product prepared in accordance with regulations that govern the manufacture of vaccines, reagents, etc.

Materials containing certain etiologic agents mean materials known to contain or reasonably believed by the shipper to contain an etiologic agent from a list included in the regulation. The list contains most of the Class 2, 3 and 4 agents but any etiologic agent should be handled according to the regulation even if it is not on the list. Patient specimens that are expected to contain an etiologic agent should be shipped according to these requirements.
11.1 Packaging of diagnostic specimens and biological products should be such that the package will withstand leakage of contents, shocks, pressure changes and other conditions incident to ordinary handling in transportation. Contents should not leak to the outside of the shipping container, even if leakage of the primary container occurs. Packages should be able to withstand rough handling and passage through cancellation machines, sorters, conveyers, etc.

11.2 Packaging of materials containing etiologic agents varies depending on the volume shipped.

For volumes not exceeding 50 ml:

The material to be shipped must be placed in a securely closed, watertight primary container. The primary container must be placed in a durable, watertight secondary container. Several primary containers may be placed in a single secondary container, so long as the total contents does not exceed 50 ml. Absorbent material must be placed in the spaces between the primary and secondary containers, so that there is enough absorbent to absorb the entire contents of the primary container(s) should breakage or leakage occur. Each set of primary and secondary containers must be placed in an outer shipping container constructed of corrugated fiberboard, cardboard, wood or other material of equivalent strength. (Most bags and envelopes are not acceptable). See Figure 2.

For volumes greater than 50 ml:

Packaging of these larger volumes must comply with the above-mentioned requirements. In addition, shock absorbent material in volume at least equal to that of the absorbent material must be placed between the secondary container and the outer shipping container. Single primary containers must not contain more than one liter of material. However, two or more primary containers, whose volumes do not exceed one liter, may be placed in a single secondary container. The maximum amount of etiologic agent that may be enclosed within a single outer shipping container may not exceed four liters.

If dry ice is used, it must be placed between the secondary container(s) and the outer shipping container and the shock absorbent material placed so that the secondary container(s) do not become loose within the outer shipping container as the dry ice sublimes.

A special label, illustrated in Figure 2, must be placed on the outer shipping container. This label identifies the package as containing etiologic agents and directs anyone observing damage to the package or leakage of its contents to call CDC.

Certain etiologic agents require special handling in addition to that stated above. Most of these agents are in Class 3 and Class 4. They must be shipped by registered mail or an equivalent system which requires or provides for sending notification of receipt to the sender immediately upon delivery. When this notice of
receipt is not received within 5 days following anticipated delivery the sender must notify CDC.

Questions pertaining to proper shipping and packaging of etiologic agents should be directed to the Biosafety Officer/EHS at 934-2618 or the Centers for Disease Control and Prevention, Office of Health and Safety at (404) 639-3883.

Figure 1

![Diagram of packaging materials]

Figure 2

![Diagram of shipping container]
Figure 3
12. Import of Etiologic Agents

Importation of infectious materials, etiologic agents and vectors that may contain them is governed by federal regulation. In general, an import permit is required for any infectious agent known to cause disease in man. This includes but is not limited to bacteria, viruses, rickettsia, parasites, yeasts and molds. In some instances, an agent which is suspected of causing human disease also requires a permit.

The following vectors require import permits:

- Animals known or suspected of being infected with any disease transmissible to man. Importation of turtles less than 4 inches in shell length and all nonhuman primates requires an importation permit issued by the United States Public Health Service (USPHS) Division of Quarantine, (404)639-1437.
- Biological materials: Unsterilized specimens of human and animal tissue (including blood), body discharges, fluids, excretions or similar material, when known or suspected to be infected with disease transmissible to man.
- Insects: Any living insect or other living arthropod, known or suspected of being infected with any disease transmissible to man. Also, if alive, any fleas, flies, lice, mites, mosquitoes or ticks, even if uninfected. This includes eggs, larvae, pupae, and nymphs as well as adult forms.
- Snails: Any snails capable of transmitting schistosomiasis. No mollusks are to be admitted without a permit from either CDC or the Department of Agriculture Any shipment of mollusks with a permit from either agency will be cleared immediately.
- Bats: All live bats. Bats may also require a permit from the U. S. Department of the Interior, Fish and Wildlife Services (USDI)

When an etiologic agent, infectious material or vector containing an infectious agent is being imported to the United States it must be accompanied by an importation permit issued by the USPHS. Importation permits are issued only to the importer, who must be located in the United States. The importation permit, with the proper packaging and labeling, will expedite clearance of the package of infectious materials through the USPHS Division of Quarantine and release by U.S. Customs.

Shipping labels containing the universal biohazard symbol, the address of the importer, the permit number and the expiration date are issued to the importer with the permit.

The importer must send the labels and one or more copies of the permit to the shipper. The permit and labels inform the U. S. Customs Service and the U.S. Division of Quarantine personnel of the package contents. The importer bears responsibility for assuring that the foreign shipping personnel pack and label the infectious materials according to USPHS regulations. Transfers of previously imported material within the United States also require a permit.

Instead of an importation permit, a "Letter of Authorization" may be issued by the issuing officer after review of an "Application to Import an Etiological Agent". The
letter is issued for materials that are judged to be noninfectious, but which might be construed to be infectious by U. S. Customs inspection personnel. Letters of Authorization may be issued for items such as formalin fixed tissues, sterile cell cultures, clinical materials such as human blood, serum, plasma, urine cerebrospinal fluid, and other tissues or materials of human origin when there is no evidence or indication that such materials contain an infectious agent. Letters of Authorization are in effect for two years, and do not require a shipping label to be issued by CDC.

Etiologic agents, infectious materials and vectors that may contain them must be carefully packaged to prevent leakage or breakage and consequent exposure to the package contents. The package must be labeled with the universal biohazard sign to warn package handlers of the hazardous contents. (See packaging instructions above).

Importation permits and Letters of Authorization are issued by the Biosafety Branch, Office of Health and Safety, CDC, after review of a completed application form. Application forms may be obtained directly from EHS (934-2618) or by calling CDC at (404)639-3883. Completed forms may be returned to CDC by mail or FAX. Application to CDC for the importation permit should be made 10 working days in advance of the shipment date to allow time for processing, issuance and delivery of the permit and shipping labels to the person requesting the permit. Call the Biosafety Officer for advice on this issue.
13. Export Control

The Office of Institutional Compliance is responsible for developing and implementing the export compliance program. Export controls are United States laws that regulate and restrict the release of critical technologies, technical data, software code, equipment, chemical and biological materials, and other materials information and services to foreign nationals and foreign countries for reasons of foreign policy and national security. Export control laws apply to all activities – not just sponsored research projects.

An export is:

- Shipment of a controlled commodity, equipment, material, or software outside of the U.S.
- Disclosing controlled technology or technical data to a foreign national, whether in the U.S. or abroad.
- Performing technical assistance or defense services for or on behalf of a foreign national, whether in the U.S. or abroad.
- Exports within the U.S. are considered to be a "deemed" export to the foreign national's home country.

http://www.uml.edu/ORA/institutionalcompliance/Export_Controls/Export_Controls.html