
Novel Techniques for Graph Algorithm

Acceleration

by Hang Liu

B. E. in Software Engineering, May 2011, Huazhong University of Science &
Technology

A Dissertation submitted to

The Faculty of
The School of Engineering and Applied Science

of the George Washington University
in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

August 31, 2017

Dissertation directed by

H. Howie Huang
Associate Professor of School of Engineering and Applied Science



The School of Engineering and Applied Science of The George Washington University

certifies that Hang Liu has passed the Final Examination for the degree of Doctor

of Philosophy as of June 12th, 2017. This is the final and approved form of the

dissertation.

Novel Techniques for Graph Algorithm

Acceleration

Hang Liu

Dissertation Research Committee:

H. Howie Huang, Associate Professor of Engineering and Applied Science, Dis-
sertation Director

Ahmed Louri, Professor of Engineering and Applied Science, Committee Mem-
ber

Milos Doroslovacki, Associate Professor of Engineering and Applied Science,
Committee Member

Guru Venkataramani, Associate Professor of Engineering and Applied Science,
Committee Member

Timothy Wood, Associate Professor of Engineering and Applied Science, Com-
mittee Member

ii



Dedication

To my beloved wife Ni Yang, Parents Qiming Liu and Guofang Huang, Sister Ye

Liu and Brother-in-law Huahua Nie.

iii



Acknowledgement

My PhD dissertation would be impossible without the support from many great

people around me. I would like to deliver my sincerest thanks to all of them.

First and foremost, I thank my advisor Dr. H. Howie Huang for the guidance,

inspiration and support that he gave me during my PhD study. It was him that

opens the door of research to me. During my six-year graduate odyssey, he helped

me from countless aspects, e.g., establishing a research problem, writing a paper,

giving a presentation, collaborating with other researchers, and mentoring students

and many many more. What I remember most is his encouragement when my first

graph algorithm paper got rejected by Eurosys ’15. There are so many exceptional

supports I have fortunately received from him. Without those support, I would never

be possible to finish or even pursue my PhD study. He sets up a model of not only

an independent researcher but also a respectful friend for me to follow. I sincerely

thank him.

I also would like to thank my dissertation committee members, Dr. Ahmed Louri,

Dr. Guru Venkataramani, Dr. Milos Doroslovacki and Dr. Timothy Wood. Their

excellent suggestions on my research proposal encouraged me to continue my research

and helped me improve my dissertation. I cannot finish my dissertation without their

guidance.

I am very fortunate to work with great collaborators as well as wonderful friends

surrounding me. I express my highest appreciation to my lab mates, Lei Cui, Ahsen

Uppal, Pradeep Kumar, Yang Hu, Yuede Ji, and Bibek Bhattarai. I also would like

to thank Dr. Ron Chi-Lung Chiang, Dr. Xin Xu, Dr. Juzi Zhao, Dr. Jie Chen, Dr.

Yu Xiang and Fan Yao for their support, help and guidance during my PhD journey.

I thank Dr. Suresh Subramaniam, Dr. Tian Lan, Dr. Rajat Mittal, Dr. Jung-Hee

Seo, Dr. Chen Zeng, and Dr. Yunjie Zhao for their great collaborations.

During my graduate studies, I also had a chance to interact with internationally

recognized researchers and receive valuable inputs from them. I am thankful to Dr.

Da Zheng (Johns Hopkins University) for his help of my Graphene work (FAST ’17) ,

iv



Dr. Duane Merrill (Nvidia Research) for Enterprise (SC ’15) and SIMD-X work, Dr.

Yangzihao Wang (UC Davis) and Dr. John D. Owens (UC Davis) for my SIMD-X

work and Andrew Gallo for my intern at Division of IT at GWU, and Dr. Cheng-Hong

Li for my intern at NEC Laboratories America Inc.

Last but not the least, I want to particularly thank my dearest wife Ni Yang. She

stands by my side regardless of my ups and downs. Her persistent encouragement,

support and suggestions enable me to pursue my PhD study, finish my dissertation

research, and seek future career dreams. Finally, I am grateful to my parents, sister

and brother-in-law for always motivating me to pursue my dreams and being there

whenever I needed them. Without them, I would not have come this far.

This work is supported in part by the National Science Foundation, and NVIDIA

Academic Partnership Award.

v



Abstract

Novel Techniques for Graph Algorithm Acceleration

The concept of graph has been around since Euler brought up the Seven Bridges

of Königsberg problem in 1736. Recent years have seen graph computing regains

its momentum because of many emerging graph relevant applications, e.g., World-

Wide-Web (WWW) networks, social and computer networks, metabolic interactions

and chemical compound design graphs. This dissertation strives to provide graph

computing systems which are able to quickly compute very large graph datasets with

relatively low cost and expose easy programming interface to programmers.

The first part of this dissertation (Chapter 2) introduces the Graphics Processing

Units (GPUs) accelerated graph traversal which consists of two projects – Enter-

prise [1] and iBFS [2]. Particularly, Enterprise is the first work that achieves atomic

operation free Breadth-First Search (BFS) on GPUs and iBFS is the first to conduct

multiple traversals together on GPUs. Both projects achieve orders of magnitude

speedup over state-of-the-art.

Chapter 3 introduces SIMD-X [3], a graph framework that supports a variety of

graph algorithms on GPUs. SIMD-X not only provides a simple Active-Compute-

Combine (ACC) programming model for end users to express graph algorithms on

Single Instruction Multiple Data (SIMD) GPUs, but also creates opportunities for

system-level optimizations. Together, SIMD-X allows programmers to develop a typ-

ical graph algorithm with less than 100 Lines Of Code (LOCs) and achieve an order

of magnitude speedup over Gunrock [4].

Chapter 4 describes Graphene [5] which can tackle trillion-edge (1012) graphs

on a single machine with an array of Solid State Drives (SSDs). To enhance the

bandwidth utilization of such an array of SSDs, we introduce a bitmap based IO

request management component that improves bandwidth efficiency by 4 - 8× and a

row-column 2D graph partition approach to balance the graph data access across the

vi



disks. Notably, Graphene achieves comparable performance to in-memory systems,

e.g., Galois [6] with merely 10% of memory consumption.

vii



Table of Contents

Dedication iii

Acknowledgement iv

Abstract vi

Table of Contents viii

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Graph Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Graph Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Graph Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Computing Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 General-Purpose GPUs . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 SSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Irregular Memory Access . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Highly Skewed Workload Distribution . . . . . . . . . . . . . . 11

1.3.3 Difficult Programmability . . . . . . . . . . . . . . . . . . . . 12

1.4 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Graph Traversal on GPUs . . . . . . . . . . . . . . . . . . . . 14

1.4.2 SIMD-X: Programming and Processing of Graph Algorithms

on GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Graphene: Fine-Grained IO Management for Graph Computing 16

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 16

viii



2 Graph Traversal on GPUs 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Breadth-First Search . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 Concurrent BFS . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Design Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Enterprise: GPU-Based BFS . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Streamlined GPU Threads Scheduling . . . . . . . . . . . . . 33

2.5.2 GPU Workload Balancing . . . . . . . . . . . . . . . . . . . . 36

2.5.3 Hub Vertex Based Optimization . . . . . . . . . . . . . . . . . 37

2.5.4 Multi-GPU Enterprise . . . . . . . . . . . . . . . . . . . . . . 40

2.6 iBFS: GPU based Multi-Source BFS . . . . . . . . . . . . . . . . . . 40

2.6.1 Joint Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.6.2 GroupBy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.3 GPU-based Bitwise Operations . . . . . . . . . . . . . . . . . 53

2.6.4 iBFS on CPUs . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.7 Enterprise Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.7.1 Graph Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.2 Enterprise Performance . . . . . . . . . . . . . . . . . . . . . . 59

2.7.3 Enterprise Scalability . . . . . . . . . . . . . . . . . . . . . . . 61

2.7.4 Analysis of GPU Counters . . . . . . . . . . . . . . . . . . . 63

2.8 iBFS Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.8.1 Graph Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 64

2.8.2 iBFS Performance . . . . . . . . . . . . . . . . . . . . . . . . 65

2.8.3 iBFS Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.8.4 Joint Traversal and GroupBy . . . . . . . . . . . . . . . . . . 68

2.8.5 Bitwise Operation . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.8.6 Comparison of State of the Art . . . . . . . . . . . . . . . . . 70

2.8.7 Application: Reachability Index . . . . . . . . . . . . . . . . . 71

ix



3 SIMD-X 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 SIMD-X Challenges and Architecture . . . . . . . . . . . . . . . . . . 76

3.3.1 Graph Computing on GPUs . . . . . . . . . . . . . . . . . . . 76

3.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 ACC Programming Model . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Work Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5 Just-In-Time Task Management . . . . . . . . . . . . . . . . . . . . . 84

3.6 Push-Pull Based Kernel Fusion . . . . . . . . . . . . . . . . . . . . . 88

3.7 Graph Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.8.1 Graph Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8.2 Comparison with State-of-the-art . . . . . . . . . . . . . . . . 94

3.8.3 Benefits of Various Techniques . . . . . . . . . . . . . . . . . . 95

3.8.4 Comparison of GPUs . . . . . . . . . . . . . . . . . . . . . . . 96

4 Graphene 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 IO Request Centric Graph Processing . . . . . . . . . . . . . . . . . . 103

4.4 Bitmap Based, Asynchronous IO . . . . . . . . . . . . . . . . . . . . 105

4.4.1 Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4.2 Bitmap-Based IO Management . . . . . . . . . . . . . . . . . 107

4.4.3 Asynchronous IO . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5 Balancing Data and Workload . . . . . . . . . . . . . . . . . . . . . . 112

4.5.1 Row-Column Balanced 2D Partition . . . . . . . . . . . . . . 112

x



4.5.2 Balancing IO and Processing . . . . . . . . . . . . . . . . . . . 113

4.6 HugePage Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.7 Graph Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.8 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.8.1 Comparison with the State of the Art . . . . . . . . . . . . . . 120

4.8.2 Benefits of IO Techniques . . . . . . . . . . . . . . . . . . . . 121

4.8.3 Analysis of Bitmap-based IO . . . . . . . . . . . . . . . . . . . 122

4.8.4 Scalability, Utility, and Throughput . . . . . . . . . . . . . . . 124

5 Conclusion and Future Work 126

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xi



List of Figures

1.1 (a) An example graph with its storage representation in (b) edge list format

and (c) CSR format, respectively. . . . . . . . . . . . . . . . . . . . . . . 4

1.2 A simplified view of GPU architecture. . . . . . . . . . . . . . . . . . . . 8

1.3 Assuming BFS traverses the sample graph and vertex {b, d} are active. . 10

1.4 Degree distribution of Twitter Graph [7] which contains 53 million vertices and

2 billion edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 (a) An example graph with its adjacency list and one valid BFS traversal

tree (there may exist multiple valid BFS trees). We use this example

throughout the paper. Top-down BFS using (b) the frontier queue or (c)

status array, vs. (d) bottom-up BFS. The numbers in the status array

represent at which level the vertex is visited. The labels of F and U

represent frontier and unvisited vertex, respectively. In (c) and (d), the

gray threads that are assigned to non-frontier vertices would idle with no

work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Hybrid (direction-optimizing) BFS. . . . . . . . . . . . . . . . . . . . . . 24

2.3 (a) An example graph used throughout this paper (b) Four valid BFS

traversal trees from different source vertices, i.e., BFS-0, BFS-1, BFS-2,

and BFS-3 starting from vertices 0, 3, 6, and 8, respectively. (c), (d), (e)

and (f) are two levels traversal of the corresponding four valid trees, where

the top half represents top-down traversal and the bottom half bottom-

up. In all examples, FQ and SA stand for frontier queue and status array,

respectively. The frontier queue stores frontiers while the status array

indicates the status of each frontier in the current level where ”F”, ”U”

and numbers represent ”Frontier”, ”Unvisited” and its depth (visited),

respectively. The dotted circles indicate the updated depth for each frontier. 25

2.4 Average frontier sharing percentage between two different BFS instances. 25

xii



2.5 Boxplot of percentage of frontiers (a) for per-level average and (b) for

top-down, direction-switching, and bottom-up. . . . . . . . . . . . . . . . 29

2.6 Cumulative Distribution Function (CDF) of out-degrees of vertices sorted

by out-degree: (a) Gowalla (b) Orkut. . . . . . . . . . . . . . . . . . . . 31

2.7 CDF of total edges in Youtube, Wiki-Talk and Kron-24-32 graphs. The

vertices are sorted by out-degrees: (a) Vertices of all range (b) Zoom in

range [0.9995, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Streamlined GPU threads scheduling using the graph example from Figure

2.1, with three workflows: (a) top-down, (b) direction-switching at the ex-

plosion level, and (c) bottom-up. Sequential access means two threads ac-

cess consecutive adjacent elements at each iteration. Strided access means

two threads access elements in stride manner at each iteration. . . . . . . 32

2.9 Execution timeline before and after streamlined GPU threads scheduling

and workload balancing for the explosion level of Facebook. . . . . . . . 34

2.10 GPU workload balancing. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.11 Comparison of direction-switching parameters. . . . . . . . . . . . . . . . 38

2.12 Hub vertex cache design, using the level 4 traversal in example graph from

Figure 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 Global memory accesses reduced by hub cache. . . . . . . . . . . . . . . 40

2.14 The flow charts of (a) BFS, (b) iBFS. . . . . . . . . . . . . . . . . . . . . 41

2.15 iBFS traversal on joint status array (a) Level 3 – top-down traversal and

(b) Level 4 – bottom-up traversal using the example graph and four BFS

instances from Figure 2.3, here i=4 and black threads are active while

gray are not. While this figure only presents the inspection of one vertex

7, we keep JSA updated with the latest depth represented as dotted circles.

Note that JSA3 is different between (a) top-down and (b) bottom-up as

frontiers are identified differently. . . . . . . . . . . . . . . . . . . . . . . 42

2.16 Generate joint frontier queue (JFQ3) from joint status array (JSA2). As-

suming we are executing the four BFS traversals of Figure 2.3 in a single

kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

xiii



2.17 Sharing ratio trend of Facebook graph (FB). . . . . . . . . . . . . . . . . 48

2.18 An illustration of a power-law graph. . . . . . . . . . . . . . . . . . . . . 49

2.19 Performance of GroupBy for different q. . . . . . . . . . . . . . . . . . . 50

2.20 Frontier sharing ratio comparison between random and GroupBy. . . . . 51

2.21 The circle represents all the vertices in a graph. There are two instances

BFS-s and BFS-t. Area I and II represent the visited vertices for BFS-s

(frontiers at top-down), and Area III and IV the unvisited vertices for

BFS-s (frontiers at bottom-up). Similarly, Area I and IV represent the

visited vertices for BFS-t, and Area II and III the unvisited vertices for

BFS-t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.22 Standard deviation of the distribution for number of inspections during

bottom-up before and after GroupBy. . . . . . . . . . . . . . . . . . . . . 53

2.23 Mapping from joint status array (JSA) to bitwise status array (BSA) for

one vertex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.24 Traversing four BFS instances of the example graph from Figure 2.3 with

bitwise status array: (a) Level 3 – Top-down traversal. (b) Level 4 –

Bottom-up traversal. Shadow bits stand for updated status. . . . . . . . 54

2.25 Enterprise performance on various graphs. Direction-optimizing BFS on

GPU using the status array method serves as the baseline (BL). Three

techniques are represented as TS for streamlined GPU Threads Scheduling,

WB for Workload Balancing, and HC for Hub vertex Cache. . . . . . . 60

2.26 Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.27 Strong and weak scalability of Enterprise. . . . . . . . . . . . . . . . . . 62

2.28 Microarchitecture profiling statistics of Enterprise: (a) Load/store func-

tion unit utilization (b) Stall caused by data request (c) IPC (d) GPU

power consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.29 Graph benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.30 Traversal rate comparison between Sequential BFS, Concurrent BFS, Joint

Traversal, Bitwise Optimization, and GroupBy. . . . . . . . . . . . . . . 65

xiv



2.31 Traversal performance when running different number of BFS groups on

HW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.32 Scalability of bitwise iBFS from 1 to 112 GPUs. . . . . . . . . . . . . . . 67

2.33 Global store transaction count during the generation of private frontier

queue, random joint frontier queue and GroupBy joint frontier queue. . . 68

2.34 Load transaction count per request. . . . . . . . . . . . . . . . . . . . . . 69

2.35 The speedup of our bitwise operation. . . . . . . . . . . . . . . . . . . . 69

2.36 Total number of load transactions. . . . . . . . . . . . . . . . . . . . . . 70

2.37 Comparison of CPU and GPU implementations. . . . . . . . . . . . . . . 71

3.1 SSSP on a graph, with nine vertices {a, b, c, d, e, f, g, h, i} and ten

undirected edges (with weights). SSSP iteratively computes on the graph

and generates the distance array. Particularly, heavy and light shadows

represent active and most recently updated vertices, respectively. . . . . 73

3.2 Mapping regular versus irregular applications on GPUs . . . . . . . . . . 77

3.3 SIMD-X architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.4 Different Programming Models . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 ACC model with BP, SSSP, and MLP . . . . . . . . . . . . . . . . . . . 81

3.6 System-level view of the ACC model . . . . . . . . . . . . . . . . . . . . 83

3.7 Three task management methods. Particularly, batch filter and ballot

filter work on Figure 3.1(d) to produce a task list for next iteration. Online

filter does that for Figure 3.1(c). . . . . . . . . . . . . . . . . . . . . . . 84

3.8 Just-in-time task management. . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 Ballot filter activation patterns. . . . . . . . . . . . . . . . . . . . . . . 87

3.10 Graph computing typically clusters push and model computation sepa-

rately together: (a) all fusion, (b) selective fusion. . . . . . . . . . . . . . 89

3.11 Deadlock problem in software global barrier, where ‘C’, ’$’, and ‘R’ repre-

sent CUDA core, L1 cache and register, respectively. . . . . . . . . . . . 90

3.12 Benefit of just-in-time task management, normalized to the performance

of the ballot filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xv



3.13 Benefit of push-pull based kernel fusion, normalized to the performance of

no fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.14 SIMD-X performance differences on K20, K40 and P100 GPUs normalized

to K20 performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1 Architecture overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 IoIterator programming model. . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Distribution of IO sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4 IO alignment cost: 4KB vs. 512-byte blocks, where one dotted box repre-

sents one 512-byte block. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Pluglist vs. bitmap IO management, (a) Pluglist where sorting and merg-

ing are limited to IO requests in the pluglist. (b) Bitmap where sorting

and merging are applied to all IO requests. . . . . . . . . . . . . . . . . . 107

4.6 Graphene BFS Performance of maximum gap. . . . . . . . . . . . . . . . 110

4.7 AIO performance w.r.t. IO size and IO context . . . . . . . . . . . . . . 111

4.8 Graphene Balanced 2D partition. . . . . . . . . . . . . . . . . . . . . . . 112

4.9 Benefit of row-column balanced 2D partition. . . . . . . . . . . . . . . . 113

4.10 Graphene scheduling management. . . . . . . . . . . . . . . . . . . . . . 114

4.11 Benefit of workload stealing. . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.12 TLB misses reduced by hugepage-enabled buffer. . . . . . . . . . . . . . 117

4.13 Graphene vs. state-of-the-art. . . . . . . . . . . . . . . . . . . . . . . . . 119

4.14 Overall performance benefits of IO techniques. . . . . . . . . . . . . . . . 120

4.15 Runtime breakdown of IO and computing with Bitmap-based IO. . . . . 122

4.16 Bitmap performance and overhead. . . . . . . . . . . . . . . . . . . . . . 123

4.17 Bitmap-based IO performance on traces. . . . . . . . . . . . . . . . . . . 123

4.18 Bitmap performance on HDD, NVMe and Ramdisk. . . . . . . . . . . . . 123

4.19 Graphene scalability on the Kron30 graph. . . . . . . . . . . . . . . . . . 124

4.20 Utility of 512-byte vs. 4KB IO. . . . . . . . . . . . . . . . . . . . . . . . 125

4.21 Throughputs of the fastest (max) and slowest (min) SSDs, and median

throughput out of 16 SSDs. . . . . . . . . . . . . . . . . . . . . . . . . . 125

xvi



List of Tables

1.1 Graph algorithms and software that use them. . . . . . . . . . . . . . . . 2

1.2 CPU (Xeon E7-4860) vs. GPU (K40) memory: size and access latency (in

CPU and GPU cycles) [8, 9] . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 SSD vs. HDD [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Summary of related work for BFS programming difficulties. . . . . . . . 13

2.1 Graph Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2 Runtime (hours) of 3-hop reachability index. . . . . . . . . . . . . . . . 71

3.1 Summary of related work. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Register consumption for various kernels. . . . . . . . . . . . . . . . . . . 88

3.3 Graph Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.4 Runtime (ms) of SIMD-X and Gunrock and Galois. A K40 GPU is used

to test SIMD-X and Gunrock, and a CPU with 28 threads for Galois. The

blank space is the test cannot complete for the given algorithm and graph. 93

4.1 IoIterator API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Graph Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Graphene runtime on Kron31 (seconds). . . . . . . . . . . . . . . . . . . 121

xvii



Chapter 1

Introduction

A graph is a powerful structure that can represent relationships between human

beings (social network) [11, 12, 13], locations (road map) [14, 15, 16], computers

(Internet) [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27], software source code (con-

trol and data flow graphs) [28, 29], and biological components (metabolic interac-

tions) [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Graph algorithms which analyze graphs

and extract valuable insights are of paramount value to our society. However, graph

algorithms typically present irregular characteristics, such as workload imbalance and

random memory access patterns, which prevent graph algorithms from achieving high-

performance. Even worse, with real-world graphs keep growing, e.g., Facebook con-

tains more than 2 billion active users and trillions of edges [12], developing graph

analytical systems that can tackle big graphs within a reasonable time envelope is

crucial.

The first question we ask is – “What real-world applications (software) can benefit

from a better graph computing system?” We have kept asking this question during

my dissertation study, but very few articles answered with adequate details. This

dissertation surveys a broad domain of literatures and presents eight examples of

real-world software that can receive immediate benefit from faster graph algorithms,

as shown in Table 1.1. Breadth-first search (BFS) is a building block for several graph

algorithms, such as centrality computing and vertex relabeling (Reverse Cuthill-Mckee

(RCM)) for graph bandwidths reduction. This dissertation finds that BFS is used

1



Algorithm Utilization Software

Breadth-first search (BFS) P2P file sharing Gnutella [40]

k-Core Graph visualization LaNet-vi [41]

Multi-source BFS Centrality computing CentiLib [42]

PageRank Webpage search Google search [43]

Single-source shortest path (SSSP) Navigation Google map [44]

Sparse matrix vector multiplication (SpMV) Computational fluid dynamics (CFD) simFlow [45]

Graph coloring Register allocation LLVM [46]

Triangle completing Friend recommendation Facebook [47]

Table 1.1: Graph algorithms and software that use them.

by Peer-to-Peer (P2P) file sharing, Gnutella [40], to target sharing neighbors. k-Core

decomposition divides a graph into layers (cores) resembling the process of zooming

in/out of a network [48]. LaNet-vi [41] is such a type of software. Multi-source

BFS [49, 2] algorithm is widely used by centrality computation [2, 49]. CentiLib [42]

is the existing software that can benefit from faster centrality computation. Google

uses PageRank and single-source shortest path (SSSP) to search the webpages of

our interest and finds the fastest path between the source and destination. During

my dissertation study [32, 33, 34], We use the sparse matrix vector multiplication

(SpMV) algorithm to solve the Navier Stokes equation for cardiac simulation [34].

The popular simFlow [45] can also benefit from our fast SpMV implementation. The

graph coloring algorithm is used by Low Level Virtual Machine (LLVM) [46] for

register allocations. In social communities, such as Facebook, the triangle completing

algorithm [50] is a typical algorithm used for friend recommendation.

Although there exist a certain number of researches about graph computing, they

mainly center around optimizing graph algorithms on traditional hardware, such as a

Central Processing Unit (CPU) and Hard Disk Drive (HDD). In contrast, the projects

proposed and implemented in this dissertation enable much faster graph computing

via unleashing the unprecedented power of a variety of new hardware platforms, such

as Graphics Processing Unit (GPU) and Solid-State Drive (SSD). The remainder of

this chapter is organized as follows.

1. Section 1.1 introduces the prevailing storage format of graphs and the algorithms

we accelerate in the follow up sections. For each algorithm, Section 1.1 presents

2



its essential data structure, operations and control-flows.

2. Section 1.2 discusses the features of contemporary GPU and SSD, as well as

comparing their hardware specifications to conventional processors and storage

devices, i.e., CPU and HDD, respectively.

3. Section 1.3 describes the challenges of mapping graph algorithms (Section 1.1)

on the hardware we discussed in Section 1.2. Specifically, we will discuss graph

algorithm’s irregular memory access, workload imbalance and hard programma-

bility of mapping graph algorithms on GPUs.

4. Section 1.4 summarizes a variety of novel optimizations from four projects of

my dissertation study. These techniques are proven to be beneficial for vari-

ous graph algorithms on GPUs, as well as SSD-based external memory graph

systems.

5. The organization of this dissertation is presented in Section 1.5.

1.1 Graph Algorithms

This section discusses three popular graph storage formats and seven graph algo-

rithms, both of which are essential for graph computing. Particularly, this section

unveils the goal (output) of each algorithm along with the control flows and data

structures that are necessary to fulfill such a goal on the discussed formats. In gen-

eral, a graph algorithm accesses graph data and updates its algorithmic

metadata which is the states of vertices or edges in an iterative manner.

We thus will present what the metadata is, how an algorithm accesses both graph

data and metadata. Note, the algorithms are presented in an alphabetical order.

1.1.1 Graph Format

Simply put, a graph G = (V , E, W ), where V , E and W are the sets of vertices, edges,

and edge weights. Figure 1.1(a) plots a simple graph which contains six vertices and

3



1 6 2 4 2 4 3 1 6 1 2 1 3 1

(c)	CSR	format

b

f

ca

ed

(a)	Sample	graph (b)	Edge	list	format	(Source,	destination,	weight)

a b 1
a d 6
e b 2
b c 4
e d 1
d e 1
c e 3

2 4

1
2 3 1

c f 1
d a 6
c b 4
b a 2
b e 2
e c 3
f c 1

6 b d a c e b e f a e b d c c

0 2 5 8 10 13 14Begin	position

Adjacency	list

a b c d e fVertex	ID

neighbor

weight

src dest weightsrc dest weight

Figure 1.1: (a) An example graph with its storage representation in (b) edge list
format and (c) CSR format, respectively.

fourteen directed edges. Note in an undirected graph like Figure 1.1(a), we regard

each undirected edge as two directed ones. Typically, graphs are stored in edge list

format that is an array of {source, destination, weight}, as shown in Figure 1.1(b).

Recent projects introduce the compressed sparse row (CSR) format [1] for better

access pattern and lower space consumption. Particularly, for the same graph in

Figure 1.1(a), CSR sorts all edges by their source vertex, and uses a begin poisition

and an adjacency list to represent the graph. In this format, adjacency list stores the

destination vertex and the edge weight of each edge. Begin position specifies the range

of destination vertices (from adjacency list) that connect to the same source vertex.

For instance, vertex a’s neighbor vertices fall in the range of 0 to 2. Comparing to

edge list format which consumes 3·|E| space, CSR only consumes 2·|E| + |V | space.

Beyond that, accessing all vertices that connect to the same source vertex experiences

sequential consecutive memory access pattern in CSR but edge list format would

experience random memory access, e.g., accessing all neighboring vertices of vertex b

in Figure 1.1(b).

Complementary to CSR format, there exists a Compressed Sparse Column (CSC)

format which sorts edges by destination vertex and only stores the source neighbors

of each destination vertex in adjacency list. As a result, CSC format introduces good

locality for algorithms that prefer accessing source vertices of each destination vertex

together, such as PageRank. As we will discuss shortly, these two formats are often

used together for further performance optimizations which is also adopted by this

dissertation.

There also exist active works of researches that develop new graph storage formats

for better space saving and performance. For instance, G-Store [51, 52] uses a bit-

4



wise matrix to store the graph, which benefits dense graph computing tremendously.

WebGraph [53] assumes the neighbor list of each vertex contains continuous vertices,

which is very common in webpage graphs. As a consequence, WebGraph uses dedu-

plication to reduce the szie of the neighbor list for each vertex thus decreases graph

size. [54] also develops graph compression techniques to enable big graph computing

in shared memory system.

1.1.2 Graph Algorithms

Breadth-First Search (BFS) [1] traverses a graph level by level. At each level, it

loads all neighbors that connect to vertices visited in preceding level (frontier), checks

the statuses of those neighbors, and subsequently marks the statuses of those unvisited

neighbors as current level. Synchronization is needed at the end of each level. The

essential data structures in BFS is status array and frontier queue. Status array,

which is indexed by vertex ID with size of |V|, indicates which level this vertex is first

time visited. Frontier queue stores frontiers. During the entire traversal process, BFS

typically experiences lighter workload at the beginning and end of the computation,

while higher workloads exist in the middle levels.

iBFS [2], also called multi-source BFS, is first defined in our iBFS project from

this dissertation. This algorithm executes multiple BFS instances on the same graph

from different sources simultaneously. Traditionally, this algorithm simply executes

all concurrent BFS instances independently, that is, each BFS instance maintains its

own metadata and conducts computations separately but share the same graph data.

We find this algorithm has a wide range of applications. Particularly, depending on

the value of i , iBFS actually becomes a number of different problems. Formally, in a

graph with |V | vertices, iBFS is:

• single source shortest path (SSSP) if i = 1 [55];

• multi-source shortest path (MSSP) if i ∈ (1, |V |)[56, 57];

• all-pairs shortest path (APSP) if i = |V | [58, 59].

5



Sparse Matrix Vector Multiplication (SpMV) [33] conducts dot-product

between each row of a sparse matrix and a dense vector and stores the output in

a result vector. In this algorithm, the sparse matrix and dense vector serve as the

roles of graph data and metadata, respectively. Unlike BFS, SpMV is completed in

a single iteration thus requires no synchronization. In this dissertation, a number of

projects [32, 33, 34] rely on this algorithm for fast CFD simulations.

k-Core Decomposition, which is widely used to study random graph evolution

and graph visualization [5, 48], iteratively deletes the vertices whose degree is less than

k until all remaining vertices possess more than k neighbors. It is worth pointing out

that this algorithm cannot be finished in one iteration because vertices just deleted

will affect the degrees of remaining vertices. In this algorithm, the degree array

serves as the metadata. Across all iterations, this algorithm experiences large volume

of tasks at initial iterations.

PageRank [43] updates the rank value of one vertex based on the contribution

of all in-neighbors iteratively till the rank values of all vertices converges. In this

algorithm, the rank array of all vertices serves as the metadata. Note this algorithm

needs two rank arrays because we need to use the old rank value to generate new ones.

Synchronization is necessary at the end of each iteration. Because the contributions

of all in neighbors are summarized to each destination vertex, this algorithm prefers

graphs in CSC format.

Single-Source Shortest Path (SSSP) computes the shortest path between

source vertex and the remaining vertices of the graph. Albeit similar to BFS as traver-

sal algorithm, SSSP is more challenging mainly for the order of computing these active

vertices is strictly restricted, that is, the vertex with the shortest distance should be

computed first. To improve the parallelism, we adopt the delta-step [60] algorithm,

which allows us to compute the vertices whose distances are relatively shorter to-

gether. This algorithm is closely related to BFS algorithm except it considers edge

weight and can be asynchronous.

Weakly Connected Component (WCC) is a special type of subgraph whose

vertices are connected to each other. For directed graphs, a strongly connected com-

6



ponent exists if a directed path can be found between all pairs of vertices in the

subgraph [61]. In contrast, a WCC exists if such a path can be found regardless of

the edge direction. We implement the hybrid WCC detection algorithm presented

in [62], that is, it uses BFS to detect the largest WCC then uses label propagation

to compute remaining smaller WCCs. In this algorithm, the label array serves as the

metadata. Synchronization is needed between BFS and label propagation.

1.2 Computing Hardware

This dissertation mainly takes advantages of two types of hardware for graph com-

puting acceleration – GPU and SSD. This section covers the hardware specifications

of GPU which we use in Enterprise [1], iBFS [2] and SIMD-X [3]. For SSD, which

is used in Graphene [5], we compare its bandwidth and latency against traditional

Hard-Drive Disks (HDDs).

1.2.1 General-Purpose GPUs

This section mainly explains GPU hardware, using NVIDIA Kepler K40 as an exam-

ple [63]. The K40 consists of 15 Streaming Processors (SMX), each of which has 192

single-precision CUDA cores and 64 double-precision units. Each GPU thread runs

on one CUDA core and an SMX schedules the threads in a group of 32 that is called

a Warp. Figure 1.2 presents an overview of GPU architecture.

An SMX can support up to 64 warps. All the threads in a warp are executed

in the single-instruction, multiple-thread fashion. But if the threads in a warp have

different control paths, the warp executes all the taken branches sequentially and

disables each individual thread that is not on the taken path. This so called branch

divergence problem, if exists, could largely reduce SMX utilization.

Each SMX features four Warp Schedulers which select four warps in round-

robin and issue the instructions from those that are ready for execution. The warps

that are not ready due to long latency data accesses are skipped. By oversubscribing

threads in each SMX, data access can be overlapped with execution.

7



L2	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Cache	  

Global	  	  	  	  	  	  Memory	  

SMX	  1	  

core	  

Shared	  Memory	  	  	  (L1	  Cache)	  

Instruc<on	  	  	  	  	  	  	  	  	  	  Cache	  
Warp	  	  	  	  	  	  	  	  	  	  	  Schedulers	  

core	  
core	   core	  
core	   core	  

Interconnect	  	  	  	  	  	  	  	  	  	  Network	  

core	  
core	  
core	  

…	  
…	  
…	  

SM
X	  2	  

SM
X	  n	  

core	  
core	  
core	  

Register	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  File	  

…	  

core	  
core	  
core	  

GPU	  

Figure 1.2: A simplified view of GPU architecture.

Cooperative Thread Array (CTA), thread block, consists of multiple warps,

typically 1 to 64, which can be used to run a large number of threads. And the set

of all the CTAs on a GPU is referred to as a Grid. The number of CTAs and the

number of threads in each CTA are configurable. Each thread in a CTA has a unique

Thread ID and each CTA has its own CTA ID. With these built-in variables, one

is able to identify each thread in a grid and schedule different threads to work on

different data.

A Kernel is defined as any function that runs on GPUs. Typically, one kernel can

use different parallel granularity (i.e., a thread, warp, CTA, or grid) by employing a

certain quantity of threads. Kepler introduces Hyper-Q to support concurrent kernel

execution, in other words, when several kernels are executed on the same GPU, Hyper-

Q is able to schedule them to run on different SMXs in parallel to fully utilize all

GPU resources.

GPU Memory Hierarchy. Each SMX has a large number of registers, e.g.,

65,536 for each K40 SMX. Each thread can use up to 255 registers and perform

four register access for each clock cycle. In addition, each SMX provides software

configurable shared memory (L1 cache) for intra-warp and intra-CTA data com-

munication. Each K40 SMX has 64 KB of shared memory. Different from the L1

cache on CPUs, one can allocate 16, 32, or 48 KB of the shared memory at the pro-

gram runtime. Once loaded, the data in the shared memory is readable and writable

to all the threads in one CTA.

8



Memory
CPU GPU

Size Latency Size Latency BFS Data Structures

Register 12 1 65,536 - Status Array
L1 cache 64KB 4 64KB - Hub Vertex Cache
L2 cache 256KB 10 1.5MB - -
L3 cache 24MB 40 - - -
DRAM up to 55 12GB 200 - Status Array, Frontier

2TB 400 Queue, Adjacency List

Table 1.2: CPU (Xeon E7-4860) vs. GPU (K40) memory: size and access latency (in
CPU and GPU cycles) [8, 9]

GPU also has the L2 cache and global memory that are shared by all SMXs.

The K40 has 1.5 MB L2 and 12 GB global memory. Each global memory access is

replied with a data block that contains 32, 64 or 128 bytes based on the type. If

a warp of threads happen to access the data in the same block, only one hardware

access transaction is performed. By coalescing global memory accesses into fewer

transactions in this way, K40 is able to achieve close to 300GB/s DRAM bandwidth.

Table 1.2 summarizes the CPU and GPU memory hierarchies. Note that K40 has

no L3 cache. We cannot find official latency numbers for register and shared memory,

but our tests show that they are at least an order of magnitude faster than the

global memory. In this work, we leverage the GPU support of concurrent kernels and

different parallel granularity to match dynamic BFS workloads, and utilizes different

GPU memory for various BFS data structures, e.g., using shared memory for hub

vertices.

GPU Hardware Performance Counters. GPUs today can support more than

100 hardware metrics [64]. In this work, we aim to understand the kernel performance,

GPU I/O throughput, and energy efficiency of our system, including the timeline of

different kernels, utilization of memory load/store function unit (ldst fu utilization),

percentage of stalls caused by data requests (stall data request), global memory load

transactions (gld transactions), IPC and power. We use two NVIDIA tools, i.e.,

nvprof and nvvp.

9



Device
Read

Power consumption (mW) Price/1 TB (USD)
Sequential (MB/s) Random (IOPS)

HDD 146 169 817 60

SSD 550 33,000 30 250

Table 1.3: SSD vs. HDD [10].

a b c d e f
(b)	CSR	format

b

f

ca

ed

(a)	Sample	graph

2 4

1
2 3 16

b d a c e b e f a e b d c c

0 2 5 8 10 13 14Begin	position

Adjacency	list

a b c d e fVertex	ID

0 1 2 1 2Metadata

Strided access

Random	access

Figure 1.3: Assuming BFS traverses the sample graph and vertex {b, d} are active.

1.2.2 SSD

This section compares the read throughput, power consumption and price differences

between SSD and HDD, particularly, Z400s SSD and 5400 HDD. As shown in Ta-

ble 1.3, SSD provides 3.8× times higher sequential throughput than HDDs with also

4.2× times the price of HDDs. However, it is important to notice that SSDs provide

hundreds of times higher random read throughput than HDDs which is crucial for

graph computing that mainly presents random read patterns. In addition to perfor-

mance, SSDs also consumes 27× less power than HDDs, which is very important for

green graph computing [65, 66, 67, 68].

1.3 Challenges

GPU and SSD provide exceptional computing and data delivering performance which

is attractive for deploying graph analytics. However, exploiting the potentials of

these two devices faces non-trivial challenges, which are irregular memory access

(Section 1.3.1), workload imbalance (Section 1.3.2), and difficult programmability

(Section 1.3.3).

10



1.3.1 Irregular Memory Access

A graph algorithm typically experiences random access for both graph data and

algorithmic metadata. Random accesses to graph data results from pointer-chasing

nature of graph algorithms, that is, each iteration, graph algorithms often access a

subgraph that is decided by previous iteration during runtime. Algorithmic metadata

typically experiences even more random memory access patterns because of indirect

memory access. Both of them can be explained by the BFS example in Figure 1.3.

We assume vertices {b, d} are visited in the preceding level. BFS needs to first access

the begin position of vertex b and d. Afterwards, BFS loads the neighbors of these

two vertices which are {a, c, e} and {a, e}. This is random graph data access. Then

BFS checks the status (metadata) of these neighbors by their neighbor IDs and marks

those unvisited neighbors as depth of 2, that is, accessing metadata[0], metadata[2]

and metadata[4] for the statuses of {a, c, e} and metadata[0] and metadata[4] for {a,

e}. This is random memory access for metadata.

In this dissertation, we design a variety of techniques to alleviate the expensive

random memory access for graph data and metadata. For instance, Enterprise [1]

sorts the frontiers before accessing their neighbors so that nearby active vertices access

their neighbors consecutively. iBFS [2] combines the metadata access of multiple BFS

instances so that accessing the metadata of the same neighbor vertex fits in the same

cache line.

1.3.2 Highly Skewed Workload Distribution

This problem stems from the fact that in real-world graphs, vertices, typically, have

drastically different degrees – number of neighbors, which is called power-law degree

distribution [69]. Figure 1.4 presents the degree distribution of a popular dataset –

Twitter graph which contains 53 million vertices and 2 billion edges. In this graph,

there are more than ten million vertices which have the degree of only one while one

vertex with nearly one million neighbors. The degree differences between these two

extreme cases is 106.

11



���
���
���
���
���
���
���
���

��� ��� ��� ��� ��� ��� ���

�
�
�
��
��
�
�

����������

Figure 1.4: Degree distribution of Twitter Graph [7] which contains 53 million vertices and
2 billion edges.

This degree distribution is detrimental for graph computing because vertex degree

is closely related to the amount of workload that is binding to this vertex. For

instance, in BFS, iBFS, PageRank, SSSP, k-Core, WCC and SpMV, the amount of

neighbors is exactly the number of workloads, i.e., workload ∝ degree. Therefore,

balancing workload across threads, machines or SSDs is crucial.

It is important to note that GPU and CPU addresses such a problem differently.

Particularly, for GPU-based system which contains abundant amount of threads, we

vary the amount of threads assigned to active vertices in order to balance the workload

across threads. For CPU-based system, which contains merely tens of threads, we rely

on graph partitioning optimization to balance the workload across SSDs and CPU

threads.

1.3.3 Difficult Programmability

Programming graph algorithms is difficult for several of reasons. First, the computing

process contains several indirections. Using BFS as an example, we need to access

the frontiers from frontier queue and using the dequeued value to index the begin

position. With the begin position, we have to access the adjacency list. Further

with the adjacency list, we need to access the status array. Second, we need to

manage several data structures. In BFS, we need to manage the adjacency list, begin

position, status array and frontier queue. Third, graph computation contains a lot of

optimization techniques such as push-pull model [70, 71], delta step model [60, 72],

and hybrid computation [73].

12



Graph system LOC of Programmers GPU vs. CPU

B40C [74] 5,000 GPU
Enterprise [1] 3,000 GPU
Gunrock [75] 600 GPU
Galois [6] 500 CPU
FlashGraph [76] 700 CPU

Table 1.4: Summary of related work for BFS programming difficulties.

Mapping graph algorithms to GPUs and SSDs introduces two more difficulties,

i.e., GPU programming and IO stack management. For GPU, a programmer needs

to explicitly manage different granularity of threads and hierarchies of memory, as

well as data flows between different data structures in a lock-free and high thread

utilization manner. To further exacerbate the situation, GPU also does not provide

global synchronization techniques, which is essential for the majority of the graph

algorithms. For SSD, managing an array of SSDs in order to provide high-throughput

graph computing is also challenging. Users need to understand the entire Linux IO

stack, which does not contain any GLIBC error handling mechanisms. Beyond that,

users also have to understand file and memory alignment for the correctness and most

efficient IO utilization.

Table 1.4, from lines of code (LOC) perspective, approximates the programming

difficulties of developing BFS on GPU (B40C, Enterprise), GPU-based graph system

(Gunrock), in memory system (Galois) and external memory system (FlashGraph).

For highly optimized GPU based graph system, like B40C and Enterprise, it takes

several thousands of LOCs to fulfill the functionalities of BFS. Even an usability

optimized system – Gunrock takes 600 LOCs to implement a BFS algorithm. For

external memory system, it takes, again, more than 500 LOCs to implement a BFS

algorithm.

In this dissertation, we introduces SIMD-X [3] for GPU based graph computing.

With SIMD architecture, users enjoy very simple data parallel programming abstrac-

tion. For external memory graph computing [5], we use “Think Like an IO request”

API to completely hide the IO complexities from programmers. Both abstractions

minimize the programmers’ involvement for the system optimizations

13



1.4 Dissertation Contributions

This dissertation encompasses five projects which fall in the topics about graph traver-

sal, graph systems and applying graph algorithms to biomedical research. The appli-

cation related project is discussed in the beginning of this dissertation. This section

summarizes the remaining four projects into three aspects, GPU-based graph traver-

sal (Section 1.4.1), GPU-accelerated graph computing (Section 1.4.2) and SSD-based

graph computing (Section 1.4.3).

1.4.1 Graph Traversal on GPUs

Enterprise [1] and iBFS [2] are the two projects related to graph traversal. Enter-

prise achieves high-performance graph traversal through combining three techniques

to remove potential performance bottlenecks: (1) streamlined GPU threads scheduling

through constructing a frontier queue without contention from concurrent threads, yet

containing no duplicated frontiers and optimized for both top-down and bottom-up

BFS. (2) GPU workload balancing that classifies the frontiers based on different out-

degrees to utilize the full spectrum of GPU parallel granularity, which significantly

increases thread-level parallelism; and (3) GPU based BFS direction optimization

quantifies the effect of hub vertices on direction-switching and selectively caches a

small set of critical hub vertices in the limited GPU shared memory to reduce expen-

sive random data accesses. We have evaluated Enterprise on a large variety of graphs

with different GPU devices. Enterprise achieves up to 76 billion traversed edges per

second (TEPS) on a single NVIDIA Kepler K40, and up to 122 billion TEPS on two

GPUs that ranks No. 45 in the Graph 500 on November 2014. Enterprise is also very

energy-efficient as No. 1 in the GreenGraph 500 (small data category), delivering 446

million TEPS per watt.

In iBFS, we focus on a special class of graph traversal algorithm - concurrent

BFS - where multiple breadth-first traversals are performed simultaneously on the

same graph. iBFS consists of three novel designs. First, iBFS develops a single GPU

kernel for joint traversal of concurrent BFS to take advantage of shared frontiers

14



across different instances. Second, outdegree-based GroupBy rules enables iBFS to

selectively run a group of BFS instances which further maximizes the frontier sharing

within such a group. Third, iBFS brings additional performance benefit by utilizing

highly optimized bitwise operations on GPUs, which allows a single GPU thread to

inspect a vertex for concurrent BFS instances. The evaluation on a wide spectrum

of graph benchmarks shows that iBFS on one GPU runs up to 30× faster than

executing BFS instances sequentially, and on 112 GPUs achieves near linear speedup

with the maximum performance of 57,267 billion traversed edges per second (TEPS).

Chapter 2 discusses this project further.

1.4.2 SIMD-X: Programming and Processing of Graph Al-

gorithms on GPUs

With high computation power and memory bandwidth, graphics processing units

(GPUs) lend themselves to accelerate data-intensive applications, especially when

they fit the single instruction multiple data (SIMD) model. However, graph algo-

rithms such as breadth-first search and k-core, often fails to take full advantage

of GPUs, due to irregularity in memory access and control flow. To address this

challenge, we have developed SIMD-X, for programming and processing of single

instruction multiple, complex, data on GPUs. Specifically, the new Active-Compute-

Combine (ACC) model not only provides ease of programming to programmers, but

more importantly creates opportunities for system-level optimization. To this end,

SIMD-X utilizes just-in-time task management which at runtime filters out inactive

vertices and dynamically maps parallel tasks of graph computing to GPUs. In ad-

dition, SIMD-X leverages push-pull based kernel fusion that with the help of a new

deadlock-free global barrier, reduces a large number of computation kernels to very

few. Using SIMD-X, a user can program a graph algorithm in tens of lines of code,

while achieving up to an order of magnitude speedup compared to the state-of-the-art.

Chapter 3 discusses this project further.

15



1.4.3 Graphene: Fine-Grained IO Management for Graph

Computing

As graphs continue to grow, external memory graph processing systems serve as a

promising alternative to in-memory solutions for low cost and high scalability. Un-

fortunately, not only does this approach require considerable efforts in programming

and IO management, but its performance also lags behind, in some cases by an order

of magnitude. In this work, we strive to achieve an ambitious goal of achieving ease of

programming and high IO performance (as in-memory processing) while maintaining

graph data on disks (as external memory processing). To this end, we have designed

and developed Graphene that consists of four new techniques: an IO request centric

programming model, bitmap based asynchronous IO, direct hugepage support, and

data and workload balancing. The evaluation shows that Graphene can not only run

several times faster than several external-memory processing systems, but also per-

forms comparably with in-memory processing on large graphs. This project is further

discussed in Chapter 4.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows. Chapter 2 studies En-

terprise – GPU acceleration of BFS and iBFS – the novel designs of concurrent

traversals. Chapter 3 describes SIMD-X, and Chapter 4 discusses the Graphene sys-

tem for external memory big graph processing. Finally in Chapter 5, we conclude

this dissertation.

16



Chapter 2

Graph Traversal on GPUs

2.1 Introduction

Breadth-First Search (BFS) algorithm serves as a building block for many analytics

workloads, e.g., single source shortest path, betweenness centrality [77, 78, 79, 80]

and closeness centrality [81, 82]. Notably, the Graph 500 benchmark uses BFS on

power-law graph to evaluate high-performance hardware architectures and software

systems that are designed to run data-intensive applications [83]. In this work, we are

particularly interested in accelerating BFS traversal on power-law graphs, which can

be found in a wide spectrum of applications, e.g., biomedical cells [84], WWW [85, 86]

and social network [87, 7, 88, 89, 90].

The traditional (top-down) BFS algorithm starts at the root of the graph and

inspects the status of all of its adjacent (or neighboring) vertices. If any adjacent

vertex is unvisited, the algorithm will identify it as a frontier, put it into a queue

that we refer to as the frontier queue in this paper, and subsequently mark it visited.

As the result of the inspection of the current level, the frontier queue consists of all

the vertices that have just been visited and will be used for expansion at the next

level. To do so, BFS iteratively selects each vertex in the frontier queue, inspects

its adjacent vertices, and marks this vertex visited. The process of expansion and

inspection is repeated level by level till no vertex in this graph remains unvisited. For

recently proposed bottom-up BFS [70], the workflow is similar with different vertices

17



identified as frontiers. Clearly, the frontier queue is at the heart of the BFS algorithm

- at each level BFS starts with the frontier queue prepared by the inspection of the

preceding level and ends with a new frontier queue that will be used for the expansion

of next level.

Graphics Processing Unit (GPU) provides not only massive parallelism (in 100Ks

threads) but also fast I/O (with 100s GB/s memory bandwidth), which makes it an

excellent hardware platform for running the BFS algorithm. Unfortunately, although

recent attempts [55, 74, 91, 92] have made remarkable progress, unleashing the full

power of GPUs to achieve high-performance BFS remains extremely challenging. In

this paper, we advocate that a high-performance BFS system shall carefully match the

hardware aspects of GPUs through efficient management of numerous GPU streaming

processors and unique memory hierarchy.

In this chapter, we present Enterprise1, a new GPU-based BFS system that tailors

the BFS execution flow and data access pattern to take full advantage of high thread

count and massive memory bandwidth of GPUs. Enterprise achieves up to 76 billion

traversed edges per second (TEPS) on a single NVIDIA Kepler K40, and up to 122

billion TEPS and 446 million TEPS per watt on two GPUs, which ranks No. 45 and

No. 1 in the Graph 500 and GreenGraph 500 small data category in November 2014,

respectively. This is achieved through the design of three novel techniques:

First, streamlined GPU threads scheduling is achieved through efficient fron-

tier queue generation of two distinct steps: the scan of the status array of the graph

at the current level, followed by prefix sum based frontier queue generation. When

enqueueing a frontier, atomic operations are needed to ensure the uniqueness of each

frontier vertex in the queue, however, for GPUs such operations can lead to expensive

overhead among a large quantity of GPU threads. By breaking the queue generation

into two steps, Enterprise is able to not only eliminate the need of thread synchro-

nization by updating and accessing the status array in parallel, but also remove du-

plicated frontiers from the queue that avoids potentially useless work down the road.

This is further combined with memory optimization to accelerate both top-down and

1Enterprise is the name of the first space shuttle built for NASA on 1976.

18



bottom-up BFS. The evaluation shows that although it may take a small amount of

time for queue generation, our GPU threads scheduling can speed up the overall BFS

runtime by 37.5×.

Second, GPU workload balancing via frontier classification. To mitigate

inter-thread workload imbalance, Enterprise classifies the frontiers based on the out-

degrees (the number of edges to adjacent vertices) into a number of queues, and

assigns a different number of threads to work on each queue. Specifically, Enterprise

creates four different frontier queues corresponding to Thread, Warp, Cooperative

Thread Array (CTA), and Grid [9]. For example, Enterprise may assign a single

thread for the frontiers whose out-degree is less than 32 and a warp for those less than

256. Enterprise may even assign all threads on one GPU to a frontier in the case of

extremely high out-degrees (e.g., 106). Prior work utilizes a fixed number of threads

(typically 32 or 256), where static assignments often result in skewed workload among

threads [55, 74, 73, 93]. The frontier classification greatly mitigates this imbalance,

leading to additional speedup of 1.6× to 4.1× on top of the proposed GPU threads

scheduling technique.

Third, GPU-aware direction optimization is developed in Enterprise to run

bottom-up BFS efficiently on GPUs. Specifically, we propose a new parameter that

uses the ratio of hub vertices in the frontier queue to determine the one-time switch

from top-down to bottom-up on GPUs. This parameter is shown to be stable across

different graphs, removing the need for parameter tuning as in the prior approach [70].

More importantly, Enterprise selectively caches the hub vertices in GPU shared mem-

ory to reduce the expensive random global memory access. Interestingly, this shared

memory based cache with a small size of 48 KB, when caching a few thousand of

critical hub vertices, can help to reduce up to 95% of global memory transactions in

bottom-up BFS.

To the best of our knowledge, Enterprise is the first GPU-based BFS system that

not only leverages a variety of GPU thread groups to balance irregular workloads but

also employs different GPU memories to mitigate random accesses, both of which

are inherent characteristics of graph traversal on power-law graph and especially

19



challenging to optimize on modern GPUs. Enterprise can be utilized to support a

number of graph algorithms such as single source shortest path, diameter detection,

strongly connected component, and betweenness centrality.

This chapter also accelerates a special class of BFS algorithm - concurrent BFS

- where multiple breadth-first traversals are performed simultaneously on the same

graph. We refer to our solution to this problem as iBFS that is able to perform

i multiple breadth-first traversals in parallel on GPUs, each from a distinct source

vertex. Here i is between 1 and |V |, i.e., the total number of vertices in the graph.

Depending on the value of i , SIMD-X actually becomes a number of different

problems. Formally, in a graph with |V | vertices, SIMD-X is

• single source shortest path (SSSP) if i = 1 [55];

• multi-source shortest path (MSSP) if i ∈ (1, |V |)[56, 57];

• all-pairs shortest path (APSP) if i = |V | [58, 59].

Moreover, SIMD-X can be utilized in many other graph algorithms such as between-

ness centrality [94, 78] and closeness centrality [81]. For example, one can leverage

SIMD-X to construct the index for answering graph reachability queries, that is,

whether there exists a path from vertex s to t with the number of edges in-between

less than k [95, 96, 97]. We will show in this paper this step can be an order of

magnitude faster with iBFS. In all, a wide variety of applications, e.g., network rout-

ing [77, 98, 80], network attack detection [99], route planning [100, 101, 102], web

crawling [103, 104], etc., can benefit from high-performance SIMD-X.

This dissertation proposes a new approach for running SIMD-X on GPUs that

consists of three novel techniques: joint traversal, GroupBy, and bitwise optimization.

Prior work has proposed to combine the execution of different BFS instances mostly

on multi-core CPUs [49, 82, 105]. The performance improvement, however, is limited.

For one, none of early projects has attempted to group the BFS instances to improve

the frontier sharing during the traversal. Further, bottom-up BFS provides new

additional challenges. For example, while MS-BFS [49] supports bottom-up, it does

not provide early termination which SIMD-X leverages for faster traversal. In essence,

BFS is a memory-intensive workload that matches well with thousands of lightweight

20



threads provided by GPUs. Prior work such as [55, 74, 91, 92] has shown great success

of using GPUs for single-source BFS. To the best of our knowledge, this is the first

work that supports concurrent BFS on GPUs.

The first technique of SIMD-X is motivated by the observation that a naive imple-

mentation that simply runs multiple BFS instances sequentially or in parallel would

not be able to achieve high parallelism on GPUs. To address this challenge, SIMD-

X proposes the technique of joint traversal to leverage the shared frontiers among

different concurrent BFS instances, as they can account for as high as 48.6% of the

vertices in some of the graphs we have evaluated. In particular, SIMD-X executes

different traversals within a single GPU kernel. That is, all concurrent BFS instances

share a joint frontier queue and a joint status array.

Second, to achieve the maximum benefit of joint traversal, SIMD-X shall exe-

cute all BFS instances together. However, this is impossible due to limited hardware

resources, e.g., global memory size and thread count, on GPUs. Fortunately, we

discover that grouping BFS instances can be optimized to ensure a high ratio of fron-

tier sharing among different instances. Guided by a theorem on inter-group sharing

ratio, SIMD-X develops the second technique of GroupBy that selectively combines

BFS instances into optimized batches, which results in 2× speedup of the overall

performance.

A typical BFS algorithm starts from the source vertex in a top-down fashion,

inspects the frontiers at each level, and switches to bottom-up to avoid inspect too

many edges unnecessarily. GroupBy improves iBFS performance in both top-down

and bottom-up, although in different fashions. In top-down, higher sharing ratio di-

rectly reduces the number of memory access for inspection and expansion. In contrast,

through sharing, GroupBy allows bottom-up traversals to complete in approximately

the same amount of time, minimizing workload imbalance across multiple BFSes.

Third, SIMD-X would need to inspect a considerable amount of frontiers at mul-

tiple levels, in some case, upto 15× more than a single BFS. Although for each

individual BFS not every vertex is a frontier at every level, concurrent BFS signifi-

cantly increases the number of frontiers at each level. While GPUs offer thousands

21



Level 21 4

Atomic	  opera.on	  

(a)	  An	  example	  graph	  with	  its	  adjacency	  list	  and	  one	  valid	  traversal	  tree	  

FQ	  2	  

FQ	  3	  

SA	  2	  

SA	  3	  

Level 2

(d)	  BoBom-‐up	  BFS	  

0	   1	   2	   3	   4	   5	   6	  

(b)	  Top-‐down	  BFS	  using	  fron.er	  queue	   (c)	  Top-‐down	  BFS	  using	  status	  array	  

0	   F	  F	   U UUU U
7	  

2	  

6	  

3	  1	  

5	  4	  0	  

7	   8	   9	  

0	  

2	   7	  
3	  

1	  

5	  

4	  

6	  

8	  

9	  

2 7

U U
8	   9	  

0	   1	   2	   3	   4	   5	   6	  
0	   1	  1	   F	   UUU F	  

7	  
U U
8	   9	  

Level 3
SA	  3	  

SA	  4	  

0	   1	   2	   3	   4	   5	   6	  
0	   1	  1	   2	   F	  F	  F	   2	  

7	  
F	   F	  
8	   9	  

0	   1	   2	   3	   4	   5	   6	  
0	   1	  1	   2	   F	  3	  3	   2	  

7	  
3	   F	  
8	   9	  

Adjacency	  list	  
0	   2	   1	   3	   0	  4	   5	   7	   2	   6	  1	   4	   2	   7	   2	   3	  

Vertex	  id	  

5	   8	   3	   9	  2	   4	   8	   5	   7	   8	  

0	   1	   2	   3	   4	   5	   6	   7	   8	   9	  

Figure 2.1: (a) An example graph with its adjacency list and one valid BFS traversal
tree (there may exist multiple valid BFS trees). We use this example throughout
the paper. Top-down BFS using (b) the frontier queue or (c) status array, vs. (d)
bottom-up BFS. The numbers in the status array represent at which level the vertex
is visited. The labels of F and U represent frontier and unvisited vertex, respectively.
In (c) and (d), the gray threads that are assigned to non-frontier vertices would idle
with no work.

of hardware threads, traversing millions of the vertices of large graphs in parallel re-

mains challenging. To this end, SIMD-X utilizes a bitwise status array that uses one

bit to represent the status of the vertex for each BFS instance. This reduces the size

of data fetched during inspection, and more importantly through bitwise operations

reduces the number of threads needed for inspection, together accelerating the graph

traversal by 11×.

The rest of the chapter is organized as follows: Section 2.2 introduces the back-

ground on GPUs, BFS, and the graphs used in this paper. Section 2.3 discusses

the related work. Section 2.4 presents the challenges of running BFS algorithms on

GPUs. Section 2.5 and Section 2.6 describe Enterprise and iBFS, respectively. We

further present the overall performance of Enterprise and iBFS in Section 2.7 and

Section 2.8, respectively.

2.2 Background

2.2.1 Breadth-First Search

Traditional (top-down) BFS algorithm performs expansion and inspection at each

level, that is, from each frontier (last recently visited) vertex v, examining whether

22



an adjacent vertex w is first-time visited. If so, v becomes the parent and w is also

enqueued into the frontier queue.

The frontiers can be generated in two ways. In the first approach of Figure 2.1(b),

known as atomic operation based frontier generation [106], two threads are dispatched

at level 2 to check the adjacency lists of vertices 1 and 4 in the queue FQ2, and both

would like to put vertex 2 into FQ3. In this case, atomic operations (e.g., atomicCAS

in CUDA [9]) are utilized to ensure that FQ3 has no duplicated frontiers, where

whichever thread that finishes first would become the parent of vertex 2. Without

atomic operations, vertex 2 would be enqueued twice, resulting in redundant work at

level 3.

Since inter-thread synchronization is costly on GPUs, a second approach [92, 91]

uses a data structure called the Status Array (SA) to track the status of each vertex

in the graph. Status array is basically a byte array indexed by the vertex ID. The

status of a vertex can be unvisited, frontier or visited (represented by its BFS level).

At every level, a thread will be assigned to each vertex, whereas only those that are

working on the frontiers will perform expansion and inspection. Thus, as shown in

Figure 2.1(c), while ten threads will be used at level 2, only two will be working

on vertices 1 and 4. The advantage of this approach is that atomic operation is no

longer needed - both vertices 1 and 4 can be the parent of vertex 2, and the update of

the status of vertex 2 can be performed sequentially. Here, unlike the first approach

whoever finishes last becomes vertex 2’s parent.

Hybrid BFS is initialized with the top-down approach and switches the direction

between top-down and bottom-up when the switching parameters satisfy the prede-

fined thresholds. Figure 2.2 presents the workflow of hybrid (direction-optimizing)

BFS. Top-down BFS aims to identify the edges that connect the frontiers and unvis-

ited vertices, while bottom-up aims to identify those between the frontiers to visited

vertices. This paper formally defines a frontier as:

Definition (Frontier) Let v be a vertex of the graph G. At level i, v becomes a

frontier if

• Top-down BFS: v was visited at level i− 1; or

23



Top-‐down	  

level++	  

Bo*om-‐up	  

level++	  

α	  

β	  
Fron*er	  Queue	   Status	  Array	  

Expansion	  /	  
Inspec*on	  

Expansion	  /	  
Inspec*on	  

Figure 2.2: Hybrid (direction-optimizing) BFS.

• Bottom-up BFS: v has not been visited between level 0 and i− 1.

Using the same example in Figure 2.1, at level 2, top-down selects vertices {1, 4}

as the frontiers. In comparison, bottom-up uses unvisited vertices {3, 5, 6, 8, 9} as

the frontiers at level 3. When bottom-up discovers that vertices {3, 5} connect to a

visited vertex 2, they are marked as visited with 2 as the parent. Similarly, vertex 8

is marked as visited with 7 as the parent.

The goal of direction-switching is to reduce a potentially large number of unnec-

essary edge checks. Hybrid BFS may switch direction twice in the process, i.e., from

top-down to bottom-up and from bottom-up to top-down, each of which is associated

with a parameter. In Figure 2.2, α is calculated as the ratio of mu and mf , where

mu represents the unexplored edge count, and mf the edges to be checked from the

top-down direction; and β is calculated as the ratio of n and nf , where n represents

the number of vertices in the graph and nf the number of vertices in the frontier

queue. Currently the thresholds are heuristically determined.

Switching from bottom-up to top-down is done in the final stages of BFS to avoid

the long tail in the graphs, which we find is neither necessary nor beneficial for En-

terprise. In this paper, we will show that building an efficient hybrid BFS system will

require a number of GPU-aware optimizations, including a stable direction-switching

parameter, hub vertex cache, as well as streamlined GPU threads scheduling and

workload balancing.

2.2.2 Concurrent BFS

Concurrent BFS executes multiple BFS instances from different source vertices. Us-

ing the example in Figure 2.3, four BFS instances start from vertex 0, 3, 6, and 8,

24



3	 3	 2	 3	 4	 4	1	 2	 4	

6	 7	 8	

2	 3	 4	 5	 6	 7	0	 1	 8	
4	 1	 2	 4	 2	 3	3	 3	 4	
2	 3	 4	 5	 6	 7	0	 1	 8	

4	 2	 3	 3	 1	 2	4	 4	 3	
2	 3	 4	 5	 6	 7	0	 1	 8	

3	 4	 4	 2	 3	 2	4	 3	 1	
2	 3	 4	 5	 6	 7	0	 1	 8	

Private	FQ3	

Private	SA3	 F	 F	 2	 F	 U	U	1	 2	 U	

1	

2	 3	 4	 5	 6	 7	0	 1	 8	
U	 1	 2	 U	 2	 F	F	 F	 U	
2	 3	 4	 5	 6	 7	0	 1	 8	

U	 2	 F	 F	 1	 2	U	U	 F	
2	 3	 4	 5	 6	 7	0	 1	 8	

F	 U	U	 2	 F	 2	U	 F	 1	
2	 3	 4	 5	 6	 7	0	 1	 8	

(c)	Source	vertex:	0	 (d)	Source	vertex:	3	 (e)	Source	vertex:	6	 (f)	Source	vertex:	8	

Level	3	(top-down)	

Level	4	(boGom-up)	
Private	FQ4	

Private	SA4	

BFS-0	 BFS-1	 BFS-2	 BFS-3	

1	

5	

2	0	

4	3	

6	 7	 8	

4	
5	2	

0	
1	

3	

6	7	 8	

6	
1	0	

3	
4	

7	

8	2	 5	

7	
5	4	

6	
3	

8	

2	0	 1	

7	
2	1	

8	
5	

6	

3	0	 4	

(a)	An	example	graph	

4	

2	 5	 8	 0	 1	 2	 0	 3	 4	

4	 6	 3	 7	 5	 7	

(b)	Four	BFS	traversal	trees	

Vertex	id	

Vertex	id	

Figure 2.3: (a) An example graph used throughout this paper (b) Four valid BFS
traversal trees from different source vertices, i.e., BFS-0, BFS-1, BFS-2, and BFS-3
starting from vertices 0, 3, 6, and 8, respectively. (c), (d), (e) and (f) are two levels
traversal of the corresponding four valid trees, where the top half represents top-
down traversal and the bottom half bottom-up. In all examples, FQ and SA stand
for frontier queue and status array, respectively. The frontier queue stores frontiers
while the status array indicates the status of each frontier in the current level where
”F”, ”U” and numbers represent ”Frontier”, ”Unvisited” and its depth (visited),
respectively. The dotted circles indicate the updated depth for each frontier.

 1

 4

 16

 64

 256

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK

Fr
on

tie
r s

ha
rin

g 
pe

rc
en

ta
ge

 (l
og

 s
ca

le
)

Top-down Bottom-up

Figure 2.4: Average frontier sharing percentage between two different BFS instances.

respectively. A naive implementation of concurrent BFS will run all BFS instances

separately and keep its own private frontier queue and status array. On a GPU device,

each individual subroutine is defined as a Kernel. Therefore, in the aforementioned

example, four kernels will run four BFS instances in parallel from four source ver-

tices. NVIDIA Kepler provides Hyper-Q to support concurrent execution of multiple

kernels, which dramatically increases the GPU utilization especially when a single

kernel cannot fully utilize the GPU [63].

Unfortunately, this naive implementation of concurrent BFS takes approximately

the same amount of time as running these BFS instances sequentially, as we will

show later in Section 2.8. For example, for all the graphs evaluated in this paper,

sequential and naive implementation of concurrent BFS take average 52 ms and 48

ms, respectively, with a difference in traversal rate of 500 million TEPS. The main

25



reason for such a small benefit is because simply running multiple BFS instances in

parallel would overwhelm the GPU, especially at the direction-switching level when a

BFS goes from top-down to bottom-up. At that moment each individual BFS would

require a large number of threads for their workloads. As a result, such a naive

implementation may even underperform a sequential execution of all BFS instances.

Opportunity of Frontier Sharing: iBFS aims to address this problem by lever-

aging the existence of frontiers shared among different BFS instances. Figure 2.4

presents the average percentage of shared frontiers per level between two instances.

The graphs used in this paper are presented in Section 2.8. Top-down levels have

smaller number of shared frontiers (close to 4% on average) whereas bottom-up lev-

els have much more as high as 48.6%. This is because bottom-up traversals often

start from a large number of unvisited vertices (frontiers in this case) and search for

their parents. The proposed GroupBy technique can improve the sharing for both

directions to 10× and 1.7×, respectively.

Potentially, the shared frontiers can yield three benefits in concurrent BFS: (1).

These frontiers need to be enqueued only once into the frontier queue. (2). The

neighbors of shared frontiers need to be loaded in-core only once during expansion.

(3). Memory accesses to the statuses of those neighbors for different BFSes can be

coalesced. It is important to note that each BFS still has to inspect the statuses

independently, because not all BFSes will have the same statuses for their neighbors.

In other words, shared frontiers do not reduce the overall workload. Nevertheless,

this work proposes that shared frontiers can be utilized to offer faster data access

and saving in memory usage, both of which are critical on GPUs. This is achieved

through a combination of bitwise, joint traversals and GroupBy rules that guide the

selection of groups of BFSes for parallel execution.

2.3 Related Work

Our system Enterprise advances the state of the art in the design and implementa-

tion of graph traversal. Prior work uses either the frontier queue [106, 74] or status

26



array [92]. Even when using both data structures, existing solutions use them at

different directions, e.g., [91, 93] use the status array at the explosion level and the

frontier queue method at other levels, and [70] uses the frontier queue for top-down

and the status array for bottom-up. Enterprise utilizes both data structures through-

out and delivers unprecedented performance on GPUs.

Recently several workload balance techniques have been proposed for GPUs such

as task stealing [107, 108] and workload donation [109, 110]. However, this type of

technique is often used in a small group of threads, and is extremely challenging to

coordinate among thousands of threads as we have in this work. Instead, Enter-

prise targets the root of BFS workload imbalance and classifies different frontiers to

mitigate the problem.

There are a number of projects [111, 112, 113] that leverage hub vertices to reduce

the communication overhead, especially for distributed BFS. For example, [111] du-

plicate the status of hub vertices across all the machines at every level, and [112] and

[113] divide hub vertices into multiple partitions and communicate in a tree-based

manner. In contrast, Enterprise only enables the hub vertex cache for bottom-up

levels when expansion and inspection center around hub vertices. Additionally, as

GPU shared memory is limited, Enterprise updates the cache at each level with those

who most likely will be visited in the following level.

Our iBFS is closely related to CPU-based MS-BFS [49], which runs concurrent

BFS by extending a single-threaded BFS, and compared to iBFS, underperforms

on large graphs, e.g., it only achieves 10 billion TEPS on a graph with a billion

of edges. In contrast, iBFS achieves more than 500 billion TEPS on a graph with

billions of edges. Furthermore, the bitwise operation from MS-BFS cannot support

early termination due to that it requires to reset the status array at each level, which

leads to a much slower performance. Most notably, iBFS introduces a novel GroupBy

strategy that improves the frontier sharing ratio dramatically and increases the benefit

of concurrent traversal by another 2×.

Recent work has demonstrated that GPUs have great potentials in delivering

high-performance breadth-first graph traversal [73, 74]. One project SpMM-BC on

27



regularized centrality [82] also extends the GPU-based BFS to concurrent BFS, but

it does not support bottom-up BFS. On the other hand, the work [79] executes

concurrent BFS to calculate the betweenness centrality [94] of a graph. However,

each GPU in this work only executes a single BFS which is similar to the naive

implementation in our work. In comparison, iBFS runs hundreds of BFS instances

with one kernel and achieves on average 22× speedup compared to executing a single

BFS on one GPU. Also, iBFS supports O(100) GPUs and achieves around 200 billion

TEPS for graphs such as LJ and OR, significantly outperforming prior work [82, 79].

In addition, our work is related to three types of shortest path algorithms [114,

115, 116, 117, 118, 119, 120], namely, Dijkstra, Bellman-Ford and Floyd-Warshall.

The first two algorithms focus on SSSP while the later APSP. Specifically, Dijk-

stra [121] applies to weighted graph where weight must be positive, with the com-

plexity of O(|E|+ |V | log |V |). Bellman-Ford [122] extends Dijkstra by allowing neg-

ative weighted edges but non-negative cycles. In contrast, our iBFS applies to all

types of shortest path problems on a unweighted graph with the time complexity of

O(i|V |) ∼ O(i|E|).

PHAST [123] runs multiple SSSP on GPU concurrently. However, this work only

applies to road network graphs and suffers from small-world graphs which do not have

good separators as mentioned in [124]. Two MSSP algorithms [125, 126] mainly focus

on special graphs, i.e., planar and embedded graphs, respectively. In contrast, our

iBFS applies to both small-world and random graphs, and leverages the opportunity

of frontier sharing to accelerate concurrent BFS.

Power efficiency [127] is of great importance to system design, e.g., [128] shuts

down GPU streaming processors predictively to save power. Our work has shown

that GPU-based graph algorithms have huge potential in delivering high performance

and energy-efficiency.

28



0
20
40
60
80

100
120

FB FR HW KR0 KR1 KR2 KR3 KR4 LJ OR PK RM TW WK

Fr
on

tie
r p

er
ce

nt
ag

e 
(%

)
(a) Per-level average

0
20
40
60
80

100
120

FB FR HW KR0 KR1 KR2 KR3 KR4 LJ OR PK RM TW WK

Fr
on

tie
r p

er
ce

nt
ag

e 
(%

) Bottom-upDirection-switchingTop-down

(b) Top-down, direction-switching and bottom-up

Figure 2.5: Boxplot of percentage of frontiers (a) for per-level average and (b) for
top-down, direction-switching, and bottom-up.

2.4 Design Challenges

Challenge #1: Putting GPU Threads to Good Use

Eliminating the need of atomic operations on GPUs for the frontier queue generation

which has been the focus of prior work [92, 74, 93, 91, 129, 106] solves only half of the

problem - the queue shall consist of only the frontiers, that is, the vertices that need

to be explored in next level. Using the status array for next level traversal, although

avoiding atomic operations, would assign one GPU thread for each vertex, regardless

whether it is a frontier [91, 92]. This inefficient approach would over-commit GPU

threads because at most levels the majority of the vertices would not be a frontier.

Alternatively, another work [74] generates the frontier queue with warp and historical

culling, but again this approach could not completely avoid duplicated vertices across

warps being enqueued. Figure 2.5(a) shows the boxplot of the percentage of the fron-

tiers at each level across different graphs, where the mean and maximum percentage,

as well as standard deviation, are presented. Note that the numbers here include the

frontiers for both top-down and bottom-up directions. It turns out that the graphs

have on average 9% frontiers per level with standard deviation of 15%. In particular,

29



the R-MAT graph has the largest average ratio of 11% and maximum of 57%, while

Twitter has the smallest average of 1% and maximum of 10.2%. If a thread were

assigned to each vertex at every level, on average at least 31% of the threads would

idle. Therefore, it is critical to have a queue that consists of the frontiers only, instead

of wasting valuable GPU threads on those with no work to perform.

This challenge is further exacerbated by the need of direction switching between

top-down and bottom-up, which generates the frontiers by focusing on two distinct

sets of vertices (visited in top-down vs. unvisited in bottom-up). To illustrate this

problem, we present the percentage of the frontiers by BFS traversal directions in

Figure 2.5(b). In general, bottom-up levels have more frontiers than top-down, i.e.,

1.5% vs 0.4%. In particular, the queue for the level when switching from top-down

to bottom-up has most frontiers at 52% on average. Using the status array alone

at this level would remain inefficient. The above observation leads us to develop

Enterprise with new GPU threads scheduling that aims to prepare a frontier queue

that is direction optimized for GPU memory hierarchy.

Challenge #2: Balancing Workloads Among GPU Threads

This challenge stems from that fact that large variance exists in the frontiers’ out-

degrees. If a frontier has more edges, the GPU thread assigned to it would naturally

need to carry out more expansion and inspection. To illustrate this imbalance, we

plot the CDF of the edge counts for two social networks in Figure 2.6, where the

average out-degrees for Gowalla and Orkut are 19 and 72 respectively. In Gowalla,

86.7% and 99.5% of the vertices have fewer than 32 and 256 edges. In contrast, while

Orkut has a smaller portion (37.5%) of the vertices with fewer than 32 edges, it has

more (58.2%) with out-degree between 32 and 256. Furthermore, a fraction (0.5%

and 4.2%) of vertices have more than 256 edges in Gowalla and Orkut with a long

tail to around 30K edges.

Statically assigning one fixed number of threads (e.g., a warp or CTA) is ineffi-

cient because the per-level runtime would be dominated by the threads with heavy

workload. Another inefficiency may also arise from the mismatch from the thread

30



0.2 0.4 0.6 0.8 1
0

2

4

6

Percentile of vertices

O
ut

−
de

gr
ee

 (
lo

g1
0)

out−degree = 256

out−degree = 32

0.2 0.4 0.6 0.8 1
0

2

4

6

Percentile of vertices

O
ut

−
de

gr
ee

 (
lo

g1
0)

out−degree = 32

out−degree = 256

(a) Gowalla out-degree (b) Orkut out-degree

Figure 2.6: Cumulative Distribution Function (CDF) of out-degrees of vertices sorted
by out-degree: (a) Gowalla (b) Orkut.

count and the workload. For example, if one CTA were assigned to work on a frontier

with fewer than 32 adjacent vertices, more than 200 threads in this CTA would have

no work to do. On the other extreme, some frontiers with very high out-degrees will

require more than one CTA, e.g., some graphs we examine have vertices with up to

106 edges. To address this challenge, Enterprise introduces a new approach of clas-

sifying frontiers based on the out-degrees and assigning an appropriate GPU parallel

granularity at runtime.

Challenge #3: Making Bottom-Up BFS GPU-Aware

0 0.5 1
0

0.5

1

Percentile of vertices

C
D

F 
of

 to
ta

l e
dg

es

 

 

Youtube
Kron−24−32
Wiki−Talk

0.9995 0.9997 0.9999 1
0

0.5

1

Percentile of vertices

C
D

F 
of

 to
ta

l e
dg

es

 

 

Youtube
Kron−24−32
Wiki−Talk

(a) All range (b) Zoom into [0.9995, 1]

Figure 2.7: CDF of total edges in Youtube, Wiki-Talk and Kron-24-32 graphs. The
vertices are sorted by out-degrees: (a) Vertices of all range (b) Zoom in range [0.9995,
1].

Implementing direction-optimizing BFS on GPUs is challenging by itself. Direction-

optimizing BFS has first been proposed and implemented on multi-core CPUs in [70],

31



6	  
	  	  

2	  

5	  
2	  3	  8	  

	  	  
2	  4	  8	  5	  

	  	  
7	  

Thread	  0	   Thread	  1	  

1	   3	  0	   2	   4	  

FQ	  2	  

SA	  2

Level 1

Level 2

Thread	  bin	  

Sequen5al	  access	  

Nonsequen5al	  access	  

(a)	  Top-‐down	  workflow	   (b)	  Direc5on-‐switching	  workflow	  

	  	  
0	  2	   2	  4	   5	  7	  2	  5	   7	  1	  3	  4	  1	   0	  

4	   1	  

1	  4	  

0	   1	   2	   3	   4	   5	   6	  
0	   F	  F	   U UUU U

7	  
U U
8	   9	  

Thread	  0	   Thread	  1	  

3	  2	   4	   6	  5	  

FQ	  3	  

SA	  3	  

Level 2

Level 3

Thread	  bin	  

Strided	  access	  

	  Sequen5al	  	  	  
opportunity	  

	  	  
2	  5	  7	  2	  5	   7	  1	  3	  4	   2	  3	  8	  3	  0	  6	   9	  

7	  

3	   5	  

3	  

0	   1	   2	   3	   4	   5	   6	  
0	   1	  1	   2	   F	  F	  F	   2	  

7	  
F	   F	  
8	   9	  

8	  
8	   9	  

6	   8	   9	  

5	   6	   8	   9	  

3	   5	   6	   8	   9	  FQ	  3	  

Thread	  0	   Thread	  1	  

Thread	  bin	   6	   9	  

FQ	  4	   6	   9	  

(c)	  BoKom-‐up	  workflow	  

Level 3

6	  5	  
2	  3	  8	  3	   9	  4	  

7	  
8	  5	  

	  	  
7	   8	  
8	   9	  

Level 4
…	  

…	  Adjacency	  List	  

1	  0	  
0	  2	  4	  1	  

3	   4	  

	  	  
2	  2	  5	   7	  0	  6	  

…	  

…	  

Figure 2.8: Streamlined GPU threads scheduling using the graph example from Figure
2.1, with three workflows: (a) top-down, (b) direction-switching at the explosion level,
and (c) bottom-up. Sequential access means two threads access consecutive adjacent
elements at each iteration. Strided access means two threads access elements in stride
manner at each iteration.

but without further optimizations would not run efficiently on GPUs that can run

thousands of threads but with a relatively smaller (e.g., 12GB) and slower (e.g., 200-

400 cycles) global memory. In contrast, as previously shown in Table 1.2, modern

CPUs have tens of cores and threads with large L3 cache and main memory with short

access latency. Fortunately, what GPU lacks on global memory is compensated by

a massive number of registers and software-configurable shared memory (L1 cache),

which can be utilized to accelerate memory intensive algorithms like BFS.

The CPU-based bottom-up BFS uses the status array to supply the unvisited

vertices for inspection, and direction switching between top-down and bottom-up

depends on the numbers of unexplored edges. In Enterprise, the GPU-based bottom-

up BFS leverages a small set of highly connected vertices called hub vertices. Formally,

we define a hub vertex as follows.

Definition (Hub Vertex) Let v be a vertex of the graph G. Consider v be a hub

vertex if its out-degree is greater than a threshold τ .

Here τ is graph specific, e.g., in the order of 100Ks for Twitter. It is common that

a few hub vertices in power-law graphs connect to a great number of vertices. Figure

2.7 presents both the CDF of total edges and a zoom-in view for the range of [99.95%,

100%] of the vertices. For the YouTube graph, one can see that 330 hub vertices (i.e.,

0.03% of the total vertices) contribute to 10% of the total edges. Similarly, 770 hub

vertices (0.005%) in Kron-24-32 produce 10% of the total edges, and 96 hub vertices

(0.004%) in Wiki-Talk account for 20% of the total edges.

32



The most unique features of our GPU-based bottom-up BFS are: 1) Enterprise

switches the direction at what we refer in this paper as the explosion level where a

large quantity of hub vertices need to be visited. In this work, we have found that

the number of hub vertices in the frontier queue can serve as a better indicator for

direction switching, which can easily implemented on GPUs. And more importantly,

2) caching hub vertices turns out to be very beneficial for bottom-up BFS.

2.5 Enterprise: GPU-Based BFS

2.5.1 Streamlined GPU Threads Scheduling

Combining the power of the status array and frontier queue, Enterprise is able to

produce streamlined scheduling of GPU threads through generating the frontier queue

at each level with a scan of the status array. At each level, Enterprise starts with

identifying the frontiers and updating the status array in a manner similar to [91, 92].

Once this step completes, Enterprise dispatches GPU threads to scan the vertices in

the status array. When a frontier is found, the thread will store this vertex in its own

thread bin. All the thread bins are stored in the global memory. Next, prefix sum is

used to calculate the offset of each bin in the frontier queue [130, 131]. Lastly, the

frontiers in each bin are copied to the queue in parallel. In all, the benefits are clear

in avoiding thread synchronization (from using the array) and reducing idle threads

at the next level (from using the queue). However, as we have shown, BFS direction

can lead to a large disparity in the number of frontiers at each level.

To this end, Enterprise schedules GPU threads using three queue generation work-

flows for top-down, direction-switching, and bottom-up, to optimize the memory ac-

cesses in all cases. The status array, frontier queue and adjacency list reside in GPU

global memory, and accessing the global memory randomly would only achieve a

meager 3% of sequential read bandwidth. To maximize the overall performance, it is

critical that we optimize the access patterns at different stages of BFS.

Top-down workflow. In this direction, Enterprise uses the GPU threads to

33



0	   100	   200	   300	   400	   500	  

Scan	  

Prefix	  sum	  

Thread	  

CTA	  

Warp	  

(a)	  Status	  array	  
490	  ms	  CTA	  kernel	  

(b)	  Streamlined	  GPU	  threads	  scheduling	  without	  workload	  balancing	  

23.6	  ms	  
419	  ms	  CTA	  kernel	  

(c)	  With	  GPU	  workload	  balancing	  

28.5	  ms	  

63.5	  ms	  	  
17.8	  ms	  
10.5	  ms	  

ms	  

FQ	  gen	  
CTA	  kernel	  

Warp	  kernel	  
Thread	  kernel	  

Figure 2.9: Execution timeline before and after streamlined GPU threads scheduling
and workload balancing for the explosion level of Facebook.

scan the status array in an interleaved manner. For the example in Figure 2.8(a),

two threads are dispatched at level 1: thread 0 checks the status of five vertices

{0, 2, 4, 6, 8}, while thread 1 checks the others {1, 3, 5, 7, 9}. This division of

work performs a sequential memory access of the status array. When prefix sum is

completed, threads 0 and 1 will copy their own thread bins into FQ2 concurrently.

In this case, FQ2 stores two frontiers out-of-order as {4, 1}, which will introduce

nonsequential memory access at level 2, that is, BFS accesses the adjacency list of

vertex 4 before vertex 1. Fortunately, the benefit of sequential access of the status

array outweighs the potential drawback of random access of the adjacency list. For

top-down, adjacent vertices in the status array are unlikely to become frontiers at the

same level, as there are only a small number (average 0.4%) of frontiers, as shown in

Figure 2.5(b).

Direction-switching (explosion-level) workflow. The situation is different

in this case. Here the GPU threads are allocated a certain portion of the status array

to scan. Using the same example, at level 2, again two threads will be used: this

time thread 0 checks the status of five vertices {0, 1, 2, 3, 4} while thread 1 checks

five vertices {5, 6, 7, 8, 9}. Unlike the top-down workflow, this approach would incur

strided memory access during the scan. Next, prefix sum is performed on thread bins

and in this example FQ3 consists of {3, 5, 6, 8, 9}. The performance benefit comes

from that the (bottom-up) frontiers may appear in order in the queue, which in turn

leads to sequential memory access at the next level. At the explosion level, chances

34



are that adjacent vertices are all unvisited, because most are as we have shown in

Figure 2.5(b). This workflow takes advantage of this fact to accelerate the next level

traversal, e.g., at level 4, loading the adjacent list of vertices 5 and 6 are sequential

adjacent memory access, and so are vertices 8 and 9.

At the explosion level, this approach will spend average 2.4× more time to scan

the status array, as compared to the top-down workflow. For example, using top-

down workflow would take 0.57 ms for the explosion level on Hollywood. In contrast,

using direction-switching workflow will take a longer time of 0.86 ms. But this ap-

proach will improve the performance of next level traversal by average 37.6%, e.g.,

Hollywood runtime at the level right after the explosion decreases from 2.7 to 2 ms.

When combined, because the latter step takes longer wall clock time, the overall per-

formance achieves an average speedup of over 16% across all the graphs, with the

best improvement of 33% on Facebook.

Bottom-up workflow. The key insight is that for bottom-up, the queue for

the current level is always a subset of the previous queue, as the frontiers are always

unvisited vertices. Instead of continuing to use the status array, we directly use the

frontier queue from the preceding level to generate the queue for current level shown

in Figure 2.8(c). This is done by simply removing the vertices that belong to current

level. This approach eliminates the need of scanning the whole status array. Only a

small (and fast shrinking) subset is inspected at each level. For example, at level 3,

FQ4 is created by removing vertices {3, 5, 8} from FQ3. Our tests show this approach

delivers 3% improvement across various graphs.

To summarize, this technique increases the number of GPU threads that actively

work on frontiers and issue memory load/store requests, which we will see in the

experiments that the utilization of memory load/store function unit increases dra-

matically. Using this design, the queue can still be generated very quickly from 2.2 to

53.7 ms for different graphs, which accounts for about 11% of the overall BFS traver-

sal time, yet delivers 2× to 37.5× speedup. Figure 2.9 presents an execution trace

of BFS execution for the explosion level of Facebook. Clearly, despite generating the

frontier queue takes 23.6 ms, because a good workqueue is prepared, new threads

35



	  SmallQueue	   	  MiddleQueue	   	  LargeQueue	  

Thread	   Warp	   CTA	   Grid	  

Status	  array	  

Fron<er	  queue	  

Kernel	  

…	  
(32,	  256)	  

…	  
(256,	  65536)	  <	  32	  

…	   …	  

256	  threads	  32	  threads	  1	  thread	   256x256	  threads	  

…	  F	   F	   …	   …	   F	  F	  

	  ExtremeQueue	  

…	  
>	  65536	  

…	  

Figure 2.10: GPU workload balancing.

scheduling reduces the runtime of expansion and inspection from 490 ms to 419 ms,

a net saving of 46 ms.

2.5.2 GPU Workload Balancing

Now that Enterprise can generate a good frontier queue quickly, but the benefit would

be minimal if the queue would lead to imbalanced workload. In this work, we believe

that parallel granularity of GPU shall be leveraged when scheduling work from the

frontier queue to ensure high thread-level parallelism. Ideally, each thread, regardless

of standalone, within a warp or CTA, shall have an equal amount of work (expansion

and inspection) at each level. To achieve this goal, Enterprise classifies the frontiers

based on their out-degrees (potential workload) and allocates a matching parallel

granularity. Enterprise focuses on the use of threads over warps or CTAs, different

from prior work [73, 74]. This is motivated by the fact that the majority of the vertices

in a graph have small out-degrees. For the graphs studied, the average percentage of

the vertices with fewer than 32 edges is 68% and may go as high as 96% in Twitter.

Enterprise classifies the frontiers that are generated with the previous technique

into four queues, SmallQueue, MiddleQueue, LargeQueue and ExtremeQueue, based

on the out-degrees of each frontier. Specifically, the frontiers in SmallQueue have

fewer than 32 edges, MiddleQueue between 32 and 256, LargeQueue between 256

and 65,536 and ExtremeQueue more than 65,536. During frontier queue generation,

each thread puts the discovered frontiers into one of four thread bins according to

their out-degrees. At the next level, four kernels (Thread, Warp, CTA and Grid)

with different number of threads will be assigned to work on different frontier queues

36



in order to balance the workloads among the threads, as shown in Figure 2.10. All

kernels are executed concurrently with Hyper-Q support.

We maintain an ExtremeQueue for dealing with vertices with extremely high out-

degrees. For instance, one vertex in KR2 has over 2.5 million edges. If one CTA were

assigned to inspect this vertex, it would require more than 10,000 iterations. This

type of vertex exists for many graphs as we have seen as long tails in Figure 2.6 and

2.7. Subsequently, expanding from these vertices would require rather long runtime,

which without special handling may greatly prolong the traversal of the whole level.

Using the whole grid here can considerably speed up the execution, e.g., 1.6× speedup

is achieved on KR0.

In Figure 2.9(b) and (c), one can see the changes in runtime before and after

workload balancing. Again, although this optimization adds another 5 ms of overhead

to classify the frontiers, we are able to shorten the overall runtime drastically, from

419 ms to 76.5 ms. In particular, the Thread kernel takes 63.5 ms, Warp 17.8 ms, and

CTA kernel 10.5 ms, where there is significant overlapping among the three kernels. In

short, this technique further removes idling threads in each CTA and warp compared

to prior methods, which similar to the first technique will lead to higher utilization

on GPU memory units.

2.5.3 Hub Vertex Based Optimization

Direction-switching parameter. In this work, we have found that it is cum-

bersome to tune the parameter α to determine when to switch from top-down to

bottom-up. Instead, as hub vertices make up a good portion at the explosion level,

we propose to use the ratio of hub vertices in the frontier queue as an indicator for

direction switching. We define the parameter γ formally as:

γ =
Fh

Th
× 100% (2.1)

where Fh is the number of hub vertices in the frontier queue (collected per level) and

Th represents the total number of hub vertices, which can be calculated very quickly

37



0
30
60
90

120
150
180
210

FB FR HW KR0KR1KR2KR3KR4 LJ OR PK RM TW WK

R
at

io
 (%

)

α γ

Figure 2.11: Comparison of direction-switching parameters.

at the first level. Our experiment shows that γ is stable without the need for manual

tuning. Figure 2.11 shows that all graphs should switch direction when γ ∈ (30, 40)%,

a very small range compared to α that fluctuates between 2 and 200. In this work,

we set the direction-switching condition as γ being larger than 30.

Enterprise traverses on average 4 levels top-down and 8 levels bottom-up across

various graphs, about one level sooner than prior method [70]. For the Kronecker

graphs, using α would inspect 4% and 17% of the edges in top-down and bottom-

up respectively, avoiding to visit the remaining 79% edges. Using our hub vertex

based parameter γ would inspect 1% and 36% edges in top-down and bottom-up. At

first glance, Enterprise would inspect more edges in total, hurting the performance.

Fortunately, as we have shown, direction switching happens at the explosion level

that is dominated by hub vertices, and bottom-up traversal focuses on identifying the

edges connecting the frontiers to recently visited hub vertices. As a result, a good

cache of hub vertices lends itself nicely for both scenarios.

Hub vertex cache. In this work, we propose to cache hub vertices in GPU

shared memory during direction switching and bottom-up, which can greatly reduce

the overhead of random global memory accesses. This benefit is achieved because

large amount of frontiers in bottom-up are very likely to connect to hub vertices.

However, as GPU shared memory is small (64 KB), we need to carefully balance the

number of hub vertices cached and the occupancy of the GPU that is defined as the

ratio of active warps running on one SMX and the maximum number of warps that

one SMX can support theoretically (64). If a grid contains 256 × 256 threads, the

full occupancy of K40 means 8 CTAs running on one streaming processor and thus

each CTA only has 6 KB shared memory to construct a cache holding around 1,000

38



Hub	  vertex	  	  cache	  
2	   7	  

Vertex	  IDs	  

Load	  the	  neighbors	  	  	  	  	  
of	  a	  fron:er	  

Hit	  in	  
cache	  ?	  

Found	  the	  
parent	  

Inspect	  the	  neighbors	  
No	  

Yes	  

Figure 2.12: Hub vertex cache design, using the level 4 traversal in example graph
from Figure 2.1.

hub vertices.

Hub vertex cache (HC) is implemented in two steps. First, during the frontier

queue generation, Enterprise caches the vertice IDs of those have just been visited at

the preceding level and also with high out-degrees. We use a hash function to figure

out which index to store each vertex ID, that is, HC[hash(ID)] = ID. Second,

during the frontier identification, Enterprise will load the frontier’s neighbors, and

check whether the vertex ID of any neighbor is cached. If so, the inspection will

terminate early with the cached neighbor identified as the parent for this frontier. In

this case, the cache avoids accessing this neighbor’s status in the global memory.

Figure 2.12 presents the workflow of the hub vertex cache. In this example, En-

terprise puts vertice IDs {2,7} in the hub vertex cache because these two vertices are

visited in the preceding level and with the high out-degrees. At the current level,

Enterprise will load the neighbors {2, 5, 6} of vertex 3 for inspection. As vertex

2 is cached, Enterprise will mark vertex 2 as the parent of vertex 3 and terminate

the inspection. On the other side, if a frontier like vertex 6 does not have a cached

neighbor, Enterprise will continue to inspect the statuses of its neighbors that reside

in the global memory. As shown in Figure 2.13, the hub vertex cache is very effective

on various graphs, saving 10% to 95% of global memory accesses. It is worthy to

point out that caching hub vertices has limited benefit for top-down BFS, as it likely

encounters very few hub vertices.

39



0

20

40

60

80

100

120

FB FR HW KR0 KR1 KR2 KR3 KR4 LJ OR PK RM TW WK
G

lo
ba

l m
em

 a
cc

es
s 

re
du

ct
io

n 
(%

)

Figure 2.13: Global memory accesses reduced by hub cache.

2.5.4 Multi-GPU Enterprise

Enterprise exploits 1-D matrix partition method [132] to distribute the graphs across

multiple GPUs. Specifically, each GPU is responsible for an equal number of vertices

from the graph, and thus a similar number of edges. We leave the study of 2-D

partition as future work. During traversal, Enterprise proceeds in three steps: (1)

Each GPU identifies the current level vertices in a private status array by expanding

from a private frontier queue. (2) All the GPUs communicate their private status

arrays to get the global view of most recently visited vertices. In this step, each GPU

uses a CUDA instruction ballot() to compress the private status array into a

bitwise array where a single bit is used to indicate whether one vertex is just visited.

This compression reduces the size of communication data by 90%. (3) Each GPU

scans the updated private status array to generate its own private frontier queue.

2.6 iBFS: GPU based Multi-Source BFS

In a nutshell, iBFS as shown in Figure 2.14, consists of three unique techniques,

namely, joint traversal, GroupBy, and bitwise optimization, which will be discussed

in Section 2.6.1, 2.6.2, and 2.6.3, respectively.

Ideally the best performance for iBFS would be achieved by running all i BFS

instances together without GroupBy. Unfortunately, ever-growing graph sizes, com-

bined with limited GPU hardware resources, puts a cap on the number of concurrent

BFS instances. In particular, we have found that GPU global memory is the dominant

40



Status	  Array	  

Fron-er	  Queue	  

Expansion	  

Inspec-on	  

FQ	  Genera-on	  

Bitwise	  Status	  Array	  	  

Joint	  Fron2er	  Queue	  

Bitwise	  Fron2er	  	  
Iden2fica2on	  	  

Bitwise	  Inspec2on	  	  

Joint	  Expansion	  

GroupBy	  

(a) A Single BFS (b) iBFS

Figure 2.14: The flow charts of (a) BFS, (b) iBFS.

factor, e.g., 12GB on K40 GPUs compared to many TB-scale graphs.

Let M be GPU memory size and N the maximum number of concurrent BFS

instances in one group (i.e., the group size). If the whole graph requires S storage, a

single BFS instance needs |SA| to store its data structures (e.g., the status array for

all the vertices), and for a joint traversal each group requires at least |JFQ| for joint

data structures (e.g., the joint frontier queue), then N 6 M−S−|JFQ|
|SA| . In most cases

N satisfies 1 < N � i 6 |V |. In this paper, we use a value of 128 for N by default.

Unfortunately, randomly grouping N different BFS instances is unlikely to pro-

duce the optimal performance. Care has to be taken to ensure a good group-

ing strategy. To illustrate this problem, for a group A with two BFS instances

BFS-s and BFS-t, let JFQA(k) be the joint frontier queue of group A at level

k, FQs(k) the individual frontier queue for BFS-s, and FQt for BFS-t. Thus,

|JFQA(k)| = |FQs(k)| ∪ |FQt(k)| − |FQs(k)| ∩ |FQt(k)|, where |FQs(k)| ∩ |FQt(k)|

represents the shared frontiers between two BFS instances. Clearly, the more shared

frontiers each group has, the higher performance iBFS will be able to achieve. Be-

fore we describe the GroupBy technique in Section 2.6.2 that aims to maximize such

sharing within each group, we will first introduce how iBFS achieves joint traversal

in the next section which makes parallel execution possible.

41



JSA2	

(b)	Level	4	—	Bo1om-up	traversal	(a)	Level	3	—	Top-down	traversal	

JSA3	

JFQ3	

Cache	

4	 5	 6	 7	1	 3	

5	 6	 8	

2	 3	 4	 5	0	 1	 6	 7	 8	

…					

…					
Vertex	id	

Vertex	id	

JSA3	

JSA4	

JFQ4	

5	 6	

…					

…					
5	 6	 7	 8	

U	 U	 U	 F	 U	 F	 1	 U	 F	 F	 U	 U	 U	U	 U	 1	
5	 6	 7	 8	

3	 F	 3	 2	 F	 2	 1	 3	 2	 2	 F	 F	 3	3	 F	 1	

5	 6	 7	 8	
3	 U	 F	 2	 U	 2	 1	 3	 2	 2	 U	 U	 F	F	 U	 1	

5	 6	 7	 8	
3	 F	 3	 2	 F	 2	 1	 3	 2	 2	 F	 F	 3	3	 4	 1	

Cache	 8	

Figure 2.15: iBFS traversal on joint status array (a) Level 3 – top-down traversal and
(b) Level 4 – bottom-up traversal using the example graph and four BFS instances
from Figure 2.3, here i=4 and black threads are active while gray are not. While this
figure only presents the inspection of one vertex 7, we keep JSA updated with the
latest depth represented as dotted circles. Note that JSA3 is different between (a)
top-down and (b) bottom-up as frontiers are identified differently.

2.6.1 Joint Traversal

In this work, we propose to implement iBFS in a single GPU kernel, different from

prior GPU-based work [79]. This way, iBFS will be able to exploit the sharing across

different BFS instances, e.g., if two threads of the same kernel are scheduled to work

on a shared frontier, iBFS only needs to load adjacent vertices from global memory

once. This benefit would be, otherwise, not possible on GPUs with a multi-kernel

implementation which would be used for the aforementioned naive implementation.

JSA2	  

JFQ3	  

Vertex	  id	  
U	  U	  F	  U	  U	  U	  1	  U	   U	   U	  U	  1	   F	  U	  F	  U	  U	   F	   U	  U	  U	  F	  U	  F	  U	  U	   1	   U	  F	   F	  U	  U	  U	  U	  U	   1	  

Warp	  vote	  

2	   3	   4	   5	   6	   7	  0	   1	   8	  

Warps	  

✗	   ✓	   ✗	   ✗	  ✓	   ✓	   ✓	   ✓	   ✓	  

3	   4	   6	   7	  1	   5	  

Figure 2.16: Generate joint frontier queue (JFQ3) from joint status array (JSA2).
Assuming we are executing the four BFS traversals of Figure 2.3 in a single kernel.

The joint traversal of iBFS uses two joint data structures for all concurrent BFS

instances: (1) Joint Status Array (JSA) is used to keep the status of each vertex

for all instances. For each vertex, iBFS puts its statuses for different BFS instances

sequentially. For example, in Figure 2.16, as we run four concurrent BFSes, four bytes

are used for each vertex. For vertex 0, the first byte of 1 indicates that vertex 0 has

been visited with the depth of 1 in BFS-0, and the next three bytes of U indicate that

the same vertex 0 has yet been visited for all three other BFS instances. (2) Joint

Frontier Queue (JFQ) is a set of all the frontiers from concurrent BFS instances,

42



where any shared frontier appears only once. Thus, this queue requires the maximum

size of |V | to store the frontiers for all i BFS instances. In comparison, using a private

frontier queue would require a much bigger queue with the size of i×|V |.

A GPU uses single instruction multiple thread (SIMT) model and schedules

threads in a warp that consists of 32 threads [9]. Several warps can form a thread

block called Cooperative Thread Array (CTA). The threads within a block can com-

municate with each other quickly with shared memory and built-in primitives.

To generate the JFQ, iBFS assigns one warp to scan the status of each vertex as

in Figure 2.16. If this vertex happens to be a frontier for any BFS instance, iBFS

needs to store it in the joint frontier queue, e.g., vertex 1 is put in JFQ3 because it is

a frontier for BFS-0 at level 3. In contrast, vertex 0 is not considered a frontier for

all four BFS instances.

It is worthy to note that iBFS uses a CUDA vote instruction, i.e., any(), to com-

municate among different threads in the same warp and schedules one thread to en-

queue the frontier. Furthermore, iBFS uses another CUDA feature ballot(parameter)

to generate a separate variable to indicate which BFS instances share this frontier.

This is important for shared frontiers, e.g., while vertex 7 is a frontier in BFS-2 and

BFS-3, it would appear once in the joint frontier queue. Removing such redundant

frontiers from the queue substantially reduces the number of costly global memory

updates, which contributes partly to performance gains obtained by iBFS.

iBFS’s joint traversal introduces two unique memory optimizations to reduce the

number of expensive global memory transactions: (1) during expansion, iBFS uses a

new cache presented in Figure 2.15 to load the adjacent vertices of a frontier from

GPU’s global memory to its shared memory to feed all BFS instances. This way the

neighbors from each frontier will only be loaded from global memory once, although

numerous requests may come from multiple BFS instances. This benefit is not limited

just to shared frontiers, rather every frontier in the queue. And (2) during inspection,

iBFS schedules multiple threads with contiguous thread IDs to work on each frontier.

Here the number of threads is the same as the that of concurrently executed BFS

instances. This is because on GPUs one global memory transaction typically fetches

43



16 contiguous data entries from an array and only continuous threads can share the

retrieved data. On the other hand, if continuous threads write to the same memory

block, such writes are coalesced into one global memory transaction as well.

Now we will use an example to show how iBFS utilizes these new structures in both

top-down and bottom-up traversal. Figure 2.15(a) exhibits the top-down traversal of

vertex 7 which is a frontier in the proceeding level (i.e., level 2). During expansion,

the neighbors {5, 6, 8} of vertex 7 are loaded in the cache. During inspection, BFS

instances that do not have this frontier will not inspect the neighbors, specifically,

the first and second threads in this figure. On the other hand, when the third and

fourth threads access the statuses of three neighbors, it is performed in a single

global memory transaction since these statuses are stored side by side and accessed

by contiguous threads. At this level, vertex 7 will also have its status updated with

the depth of 2.

The bottom-up traversal is performed in a different manner as shown in Fig-

ure 2.15(b). For the frontier vertex 7, iBFS will similarly load its adjacent vertices

{5, 6, 8} into the cache. The difference here is that iBFS will check if {5, 6, 8} are

already visited, if so, mark the depth of 7 as 4.

Note that a vertex can be a frontier at both top-down and bottom-up levels, for

example, vertex 7 in Figure 2.15. In Figure 2.15(a), vertex 7 is a frontier for top-down

traversal of the third and fourth BFSes, and in Figure 2.15(b) bottom-up of the first

BFS. Clearly, as long as one BFS considers a vertex as a frontier at a particular level,

this vertex shall be enqueued in iBFS.

2.6.2 GroupBy

In this section, we will introduce the concept of sharing ratio, and propose several

outdegree-based GroupBy rules. We will first use top-down traversal for the discussion

of GroupBy and later present the impacts on bottom-up BFS.

44



Frontier Sharing Degree and Ratio

To a great extent, the performance of iBFS is determined by how many frontiers

are shared at each level during the joint traversal of each group. This is because

if multiple BFS instances have a common frontier in one level, all its edges will be

checked only once, thus leading to overall performance improvement. In this work we

define for any group, say group A with the size N, the Sharing Degree (SDA) as the

degree of sharing that exists in the joint frontier queue:

SDA =

∑
k

N∑
j=1

|FQj(k)|∑
k

|JFQA(k)|
(2.2)

where j ∈ [1, N] and represents the j-th BFS instance in the group A, and k represents

the level (or depth) for the traversal. In essence, SDA shows on average each joint

frontier is shared by how many BFS instances in a group. Thus, the Sharing Ratio

can be easily calculated as SD divided by the total number of instances in the group.

Traditionally, the time complexity of a BFS is calculated by the number of inspec-

tions performed, that is, the edge count |E|. Thus the time of a sequential execution

of group A will be N · |E|.

In this work, We use TA(k) to represent the time of the joint execution of group

A at the level k, that is,

TA(k) =
∑

v∈JFQA(k)

outdegree(v)

where v stands for each frontier in the JFQ at the level k. And the total runtime TA

for group A can be calculated by summarizing the runtime of each level, which is:

TA =
∑
k

TA(k) =
∑
k

∑
v∈JFQA(k)

outdegree(v) (2.3)

According to the Amdahl’s Law, the speedup SpeedupA of joint traversal for group

45



A over sequential execution is:

SpeedupA =
N · |E|
TA

(2.4)

Let d̄ be the average outdegree, we can obtain the expected value of SpeedupA

using equations (2.3) and (2.4). Thus,

E[SpeedupA] = E[
N · d̄ · |V |

d̄ ·
∑
k

|JFQA(k)|
]

= E[
N · |V |∑

k

|JFQA(k)|
]

(2.5)

Lemma 1. For any BFS group, say group A, its sharing ratio is equal to the expected

value of SpeedupA , that is,

SDA = E[SpeedupA] (2.6)

Proof. Because for the j-th BFS every vertex will become a frontier at one of the

levels, the sum of |FQj(k)| across all levels is equal to the total number of the vertices,

that is,
∑
k

|FQj(k)| = |V |.

SDA =

∑
k

N∑
j=1
|FQj(k)|∑

k

|JFQA(k)|
=

N∑
j=1
|V |∑

k

|JFQA(k)|

= E[SpeedupA]

(2.7)

Lemma 1 demonstrates that the sharing ratio reflects the performance of the joint

execution when it is compared to the sequential execution of such a group. However,

for any group, since the size of JFQ at each level is not known until runtime, we will

not able to calculate a priori the sharing ratio as well as the expected performance.

Fortunately, we discover that the sharing ratios at the first few levels can be used

as a good metric, and there also exists an important correlation for sharing ratios at

46



consecutive levels.

Theorem 1. Given any two BFS groups A and B with the same number of BFS

instances, if at the level k their sharing ratios obeys SDA(k) > SDB(k), at the level

k + 1 the following relationship, E[SDA(k + 1)] > E[SDB(k + 1)], will hold.

Proof. Let us start with one group A. At the level k, the j-th BFS performs two

main tasks for a frontier vertex v, i.e., expansion and inspection. In the first task,

the j-th BFS fetches the neighbor list of frontier v, and in the second task, it checks

all neighbors. The number of inspections is equal to the outdegree of v.

We define null inspections as those that do not lead to an increase in the size of the

frontier queue at a particular level. Note that as vertices are shared, null inspections

do not necessarily mean such inspections have not found a frontier at the next level.

There are three cases that render a neighbor check as a null inspection. The first

two cases are relevant to a single BFS, while all three are applicable to iBFS. For a

neighbor w of the frontier v,

Case 1 : the neighbor w is visited.

Case 2 : the neighbor w has already been marked as a new frontier by other in-

spections at the level k. This check will be discarded, and will not increase the

size of the frontier queue. This happens because w may have additional parents

other than v.

Case 3 : the neighbor w has already been marked as a new frontier by other concur-

rent BFS instances. Similarly, in joint traversal, this check will be discarded,

and will not increase the size of the frontier queue, because w may be shared

by concurrent BFS instances.

We use three values to represent the occurring percentages of three cases: α

accounts for case 1 and 2 for a single BFS, β for case 1 and 2 for iBFS, and γ for

case 3 for iBFS alone. Thus, the probability of the complement of case 1 and 2 for a

single BFS can be represented by (1− α), and so on.

Now for the level k + 1, the size of JFQ is equal to the sum of the number of

frontiers shared by different BFS instances within group A, from one to N instances.

47



 0

 20

 40

 60

 80

 100

 120

2 3 4 5 6 7 8 9

S
D

Level

Group A
Group B
Random group

Figure 2.17: Sharing ratio trend of Facebook graph (FB).

Thus, let sj(k) be the number of vertices that are shared by exactly j BFS instances,

we have

SDA(k + 1) =

N∑
j=1
|FQj(k + 1)|

|JFQA(k + 1)|
=

N∑
j=1

j · sj(k + 1)

N∑
j=1

sj(k + 1)

=

N∑
j=1

j · sj(k) · dj · (1− αj)

N∑
j=1

sj(k) · dj · (1− βj − γj)

(2.8)

where dj denotes the average out-degree of these frontiers.

Since we do not know a priori the values for dj, αj, βj, and γj, if replacing them

with average values d̄, ᾱ(k), β̄(k), and γ̄(k), the expected value of SDA(k + 1) is

E[SDA(k + 1)] =

N∑
j=1

j · sj(k) · d̄ · (1− ᾱ(k))

N∑
j=1

sj(k) · d̄ · (1− (β̄(k))− γ̄(k))

(2.9)

We assume that each single BFS has the same probability ᾱ(k), so for iBFS, we have

β̄(k) = ᾱj(k), and

E[SDA(k + 1)] =

N∑
j=1

j · sj(k) · d̄ · (1− ᾱ(k))

N∑
j=1

sj(k) · d̄ · (1− (ᾱj(k))− γ̄(k))

≈ SDA(k) · 1− ᾱ(k)

1− γ̄(k)

(2.10)

48



Rule	  1	   Rule	  1	  

Source	  Vertex	  1	   Source	  Vertex	  2	  

Rule	  2	  

:	  Not	  shared	   :	  Shared	  

…	  

High	  	  
Outdegree	  	  
Vertex	  

Figure 2.18: An illustration of a power-law graph.

Now we consider two groups A and B. If SDA(k) > SDB(k), as ᾱ(k) and γ̄(k) are

independent of groups, we get E[SDA(k+ 1)] > E[SDB(k+ 1)] from equation (2.10).

Figure 2.17 exhibits average sharing ratios for three different groups. We start

from the second level as no BFS instances share the source vertices, and the maximum

SD is equal to N , that is, 128. Since group A has a higher SD at the second level

than group B, it always has higher ratios in the following levels. Similarly, group

B has higher ratios than random. Clearly, as shown in Figure 2.17, sharing ratios

would not increase monotonically for a group, which tend to peak at the first several

bottom-up levels. Nevertheless, Theorem 1 implies that a higher sharing ratio of the

initial levels can lead to a higher expected sharing ratio in later levels. Combining

Lemma 1 and Theorem 1, we can see that a GroupBy strategy can achieve good

speedup by focusing on the first several levels as described in Lemma 2.

Lemma 2. For two BFS groups A and B, for a small number k, if their initial sharing

ratios obey SDA(k) > SDB(k) at the level k, the expected values for the speedups will

follow E[speedupA] > E[speedupB].

Outdegree-based GroupBy Rules

Lemma 2 states that a good GroupBy rule can be obtained by focusing on increas-

ing the BFS sharing in the first several levels. Fortunately, an easy analysis on

the outdegrees of the frontiers at these levels, coupled with a quick determination

on the connectivity to high-outdegree vertices, can lead to two simple yet powerful

outdegree-based rules:

49



 0

 20

 40

 60

 80

 100

 1  4  16  64  256  1024  4096

R
el

at
iv

e 
pe

rfo
rm

an
ce

 (%
)

q

HW
KG0
LJ
OR

Figure 2.19: Performance of GroupBy for different q.

Rule 1 The out-degrees of these two source vertices are less than p.

Rule 2 Two source vertices connect to at least one common vertex whose outdegree

is greater than q.

Both rules are complementary to each other. Since the first rule ensures small

outdegrees of the source vertices, other non-shared neighbors will not amortize the

sharing ratio contributed by the shared vertex with high outdegrees from the second

rule. With these two GroupBy rules, two BFS instances will likely get high sharing

ratio.

Figure 2.18 shows an example of a power-law graph which is the focus of this

work. In this example, many vertices are connected to a high-outdegree vertex, and

the source vertices for different BFSes are not exception. When they share a common

high-outdegree vertex, high sharing ratio across multiple BFSes can be easily achieved.

It is not required that the source vertex directly connects to a high-outdegree vertex,

as long as within the first several levels. Simply put, for two BFSes, it is beneficial

to group them together if their source vertices have relatively small number of edges

and also connect to high-outdegree vertices.

Selection of p and q. Figure 2.19 plots the GroupBy performance for different q

values. One can see that the performance rises initially and reaches the peak, typically

around the range of 128 – 1024. The lower performance is observed for both smaller

and larger q. For smaller q, the groups would likely have small sharing ratios. On the

other hand, for larger q, very few BFS instances would satisfy the GroupBy rules. In

this paper q is 128 by default. Once q is decided, p is selected in the ascending order

50



 0

 25

 50

 75

 100

Fr
on

tie
r s

ha
rin

g 
ra

tio
 (p

er
ce

nt
ag

e)

(a) Top-down

Random grouping
GroupBy

 0
 25
 50
 75

 100

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK
(b) Bottom-up

Figure 2.20: Frontier sharing ratio comparison between random and GroupBy.

from a sequence of numbers that are the power of 2. Here we select p from a sequence

of 4, 16, 64, and 128.

The rules are applied as follows. First, iBFS selects all groups that satisfy both rule

1 and 2 with pre-determined p and q. iBFS will run such groups directly when their

sizes are larger than N , the maximum group size described in Section 2.6. Otherwise,

several small groups, likely using different values of p, will be combined and run

together. Second, iBFS will try to combine the groups with different high-outdegree

vertices. Last, when no BFS satisfies both rules, iBFS will group the remaining them

in a random manner.

Sharing ratio improvement. Figure 2.20 plots the improvement on the sharing

ratio using outdegree-based rules for both top-down and bottom-up. Specifically, for

top-down, our GroupBy rules improves the sharing ratio by 10×, which increases from

average 3.9% to 39.3% for 128 BFS instances. For bottom-up, although the relative

improvement is smaller, the sharing ratio is greatly improved to average 66.1% which

we will discuss shortly.

For random graph that has a relatively uniform outdegree distribution, iBFS can

adopt a slightly different rule. Since Theorem 1 and Lemma 2 still apply, iBFS can

select a group of BFS instances if they share some common vertices from the sources.

Our evaluation shows that such a rule may obtain 3.5× and 5% improvement in top-

down and bottom-up respectively on a random graph, albeit much smaller compared

to other graphs in our test suite.

51



I 

II 

III 

IV 

w 

y 
x z 

Figure 2.21: The circle represents all the vertices in a graph. There are two instances
BFS-s and BFS-t. Area I and II represent the visited vertices for BFS-s (frontiers at
top-down), and Area III and IV the unvisited vertices for BFS-s (frontiers at bottom-
up). Similarly, Area I and IV represent the visited vertices for BFS-t, and Area II
and III the unvisited vertices for BFS-t.

GroupBy on Bottom-Up BFS

So far we have focused on GroupBy during the top-down stage of BFS. Surprisingly,

good GroupBy rules for top-down will lend themselves to achieving great speedups

during the bottom-up stage. Together, GroupBy further accelerates iBFS perfor-

mance by increasing frontier sharing and more importantly balancing the workload

across various BFS instances. These two effects can be best explained using an ex-

ample of two BFS instances, say BFS-s and BFS-t, within a group. In Figure 2.21,

Area I represents shared, visited vertices between two BFSes whereas Area III shared,

unvisited vertices. When BFS-s and BFS-t share more frontiers at top-down, that is,

bigger Area I, they share more frontiers at bottom-up, that is, bigger Area III. From

Figure 2.20(b), one can see that for bottom-up, all the graphs still achieve 66.1%

on average, close to 2 times improvement. This is significant because in bottom-up

frontier sharing ratio is already high (38.7%) to begin with.

The most significant benefit of GroupBy when it comes to bottom up lies on the

fact that it helps balance the workload. For a shared vertex w in Area III shown in

Figure 2.21, depending on which BFS it belongs to and who is its parent, it may need

to search all three other areas. Again, When BFS-s and BFS-t share more frontiers

at top-down, that is, bigger Area I, this also increases the likelihood that both BFS

instances discover the shared parent y in Area I. As bottom-up inspection termi-

52



 0

 30

 60

 90

 120

 150

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK

309 744 275

S
ta

nd
ar

d 
de

vi
at

io
n

Random grouping
GroupBy

Figure 2.22: Standard deviation of the distribution for number of inspections during
bottom-up before and after GroupBy.

nates as soon as a parent is found, such sharing will further lead to similar runtimes

across different BFSes, that is, reducing the variance in runtimes. To demonstrate

this, Figure 2.22 shows the standard deviation for the number of inspections during

bottom-up before and after GroupBy. Since GroupBy combines the BFS instances

that would find their parent with a similar runtime, it lowers the standard deviation

by 13×. Among all the graphs, it helps the TW graph the most – by 66×, reducing

the number of inspections from 744 to 11.3. Clearly, GroupBy helps to transform a

highly imbalanced workload to a much more balanced one.

2.6.3 GPU-based Bitwise Operations

Although joint status array removes random inspections on shared frontiers, assigning

a warp of threads to work on each frontier is not feasible when a graph has millions

of frontiers. While modern GPUs like NVIDIA K40 provide thousands of hardware

threads, clearly we still need to find a smart way to utilize threads effectively when

dealing with several millions of vertices in a graph. To this end, we propose a novel

concept of Bitwise Status Array (BSA) in iBFS that uses a single bit to represent

the status of each vertex for different BFS instances. And all bits of one vertex are

kept in a single variable. If this vertex is visited, we set it as 1, otherwise 0.

Figure 2.23 presents the mapping between joint and bitwise status array. Here for

any vertex, while JSA uses the first four variables (3, U, 3, 2) to store the status for

four BFS instances, BSA only needs a single variable (1011).

53



JSA	  

BSA	  

Single	  variable	  

1 0 1 1	  

3	   U	   3	   2	  

Four	  variables	  

	  	  …	  	  	  

	  	  …	  	  	  

	  	  …	  	  	  

	  	  …	  	  	  

Figure 2.23: Mapping from joint status array (JSA) to bitwise status array (BSA) for
one vertex.

1 0 1 1	

(b)	Level	4	—	Bo/om-up	traversal	(a)	Level	3	—	Top-down	traversal	

BSA3	

BSA3	
OR OR OR

1 0 0 1	 0 1 1 0	 0 1 1 1	 0 0 0 1	

1 0 1 1	 0 1 1 1	 0 1 1 1	 0 0 1 1	
5	 6	 7	 8	
1	 1	 1	

BSA3[5]	

BSA4	

BSA4	

OR

1 0 1 1	 0 1 1 1	 0 1 1 1	 0 0 1 1	
5	 6	 7	 8	

1	

Vertex	id	

Vertex	id	

5	 6	 7	 8	
1 0 1 1	 0 1 1 1	 0 1 1 1	 0 0 1 1	

5	 6	 7	 8	

0 0 1 1	BSA2[7]	
early	terminaJon	

BSA3[6]	 BSA3[8]	
✗	 ✗	

Figure 2.24: Traversing four BFS instances of the example graph from Figure 2.3
with bitwise status array: (a) Level 3 – Top-down traversal. (b) Level 4 – Bottom-up
traversal. Shadow bits stand for updated status.

With the bitwise status array, iBFS only needs one expansion thread to fetch

the statuses of each vertex for all concurrent BFS. In addition, the inspection of

concurrent BFS that will be described shortly can be executed by a single bitwise

operation, which can be easily done with a single thread. In summary, this design

frees up a substantial number of threads and further reduces the number of global

memory access.

Bitwise Inspection. At level k + 1, iBFS keeps a copy of bitwise status array

– BSAk. During traversal, the statuses for the most recently visited vertices are also

marked as 1 in BSAk+1. At the end of each level, the differences between BSAk

and BSAk+1 are used to identify the just visited vertices. Algorithm 1 shows the

pseudo-code.

For top-down traversal, iBFS assigns a single thread to work on frontier f . This

thread loads frontier’s status (i.e., BSAk[f]) from BSAk and subsequently sets all

neighbors’ status in BSAk+1[v] via a bitwise OR operation. For each neighbor, this OR

operation only affects the bits for the corresponding BFS instances that share this

frontier, because only these bits in BSAk[f ] are recently updated as 1.

54



Algorithm 1 Bitwise iBFS at Level k + 1

1: BSAk+1 ← BSAk

2: forall frontier f in parallel do
3: foreach neighbor v of f do
4: if Top-Down then
5: BSAk+1[v] = BSAk+1[v] ORatomic BSAk[f]
6: else // Bottom-up
7: if BSAk+1[f]==0xff...f then
8: break; // Early termination
9: end if

10: BSAk+1[f] = BSAk+1[f] OR BSAk[v]
11: end if
12: end for
13: end for

Using frontier 7 in Figure 2.24(a) as an example, vertex 7 is a frontier shared by

the third and fourth BFS instances in Figure 2.3. During the inspection of vertex 7’s

neighbor – {5, 6, 8}, iBFS uses the bitwise OR operation between 7’s status and each

neighbor’s status. Specifically, for vertex 5, it sets the third bit in BSA3[5], and for

vertex 6, the fourth bit in BSA3[6]. One may also notice that, the OR operation does

not affect the already set bits, like the fourth bit of vertex 5 in BSA3[5]. The reason

is that the fourth BFS instance has already visited vertex 5 in prior levels.

Because multiple BFS instances may want to set different bits of the same ver-

tex in the bitwise status array concurrently, iBFS needs atomic operations to avoid

overwrites of the updates to BSAk+1, another difference from [49].

Bottom-up traversal, similarly assigns a single thread to work on each frontier.

However, the frontier’s status is updated by the neighbors’ statuses, that is, iBFS

uses OR between BSAk+1[f] and BSAk[v] and stores the result into BSAk+1[f]. Using

frontier 7 of Figure 2.24(b) as an example, its neighbors are {5, 6, 8}. iBFS executes

OR between vertex 5’s and 7’s statuses and stores the result in BSA4[7].

Early Termination. During bottom-up traversal for some frontiers, like frontier

7 in Figure 2.24(b), iBFS does not necessarily need to check all its neighbors because

it is possible that some of its neighbors (e.g., vertex 5 for frontier 7) can set all bits of

this frontier in the bitwise status array. When this happens, iBFS will terminate the

55



Algorithm 2 Frontier Identification at Level k + 1

1: forall vertex v in parallel do
2: if Top-down then
3: if BSAk+1[v] XOR BSAk[v] then
4: JFQ.enqueue(v)
5: end if
6: else // Bottom-up
7: if NOT BSAk+1[v] then
8: JFQ.enqueue(v)
9: end if

10: end if
11: end for

inspection on this frontier, eliminating the need to further examine other neighbors

(e.g., vertices 6 and 8), which we call early termination in this work. This newly freed-

up thread will then be scheduled to work on other frontiers. This is not possible unless

the bitwise operations already record all visited vertices as ‘1’ in BSA, in this case

before this level BSA4[7] already has three bits set. In short, the early termination

allows a great reduction in the traversal time compared to prior work such as [49].

Bitwise Frontier Identification. iBFS also needs a different approach for fron-

tier identification that works efficiently with the bitwise status array. Algorithm 2

shows the pseudocode for bitwise frontier identification.

Top-down traversal executes the XOR operation between BSAk[v] and BSAk+1[v].

If true is returned, it means some BFS instances have just changed the corresponding

bit of v and stored in BSAk+1[v]. Since top-down treats most recently visited vertices

as frontiers, iBFS hence stores the identified frontiers in the joint frontier queue.

In contrast, bottom-up traversal, is much easier since it treats unvisited vertices as

frontiers. Therefore, iBFS simply performs a NOT operation on BSAk+1[v]. If it is

evaluated as true, that is, some bits of BSAk+1[v] are not set, then this vertex is a

frontier and iBFS puts it in the joint frontier queue.

Vector data types on GPUs are also leveraged in iBFS. Clearly, the number of

bits in each variable affects the number of concurrent BFS, e.g., if BSA is implemented

with int type, one variable can represent the statuses for 32 BFS instances. In CUDA,

56



the basic data are char, int and long, and on the other hand vector packs multiple

basic types into one, e.g., int4 contains four ints, similarly char4, long4 etc. Using

the vector data type in iBFS can further reduce the memory access time as it fetches

four basic data elements together at one time.

Summary. Our bit-wise approach is novel in a number of ways, which leads

to upto 2.6× speedup over [49]. First, [49] resets the bitwise status array at each

level and only records the current level frontiers as 1. In comparison, iBFS records

every visited vertex as 1 regardless of which level it is visited. This way our bit-

wise status array remembers all visited vertices, for which we also introduce a new

frontier identification technique and early termination during bottom-up traversal as

described earlier. Second, [49] is based on single thread BFS implementation, that is,

each thread works on one BFS instance. In contrast, iBFS supports multi-threaded

bitwise operation, that is, all available threads will work on a group of BFS instances.

Inter-thread synchronization shall be carefully managed, because in iBFS multiple

threads will need to update different bits of the same vertex simultaneously. In top-

down, iBFS uses (manually controllable) shared memory on GPUs to cache and merge

the updates in the same CTA (typically 256 threads), which avoids the overhead of

atomic operations at this step. Next, iBFS has to rely on atomic operations to push

the combined updates to the global memory. In bottom-up, iBFS performs multi-step

tree-based merging of the updates within threads in a warp or CTA, again avoiding

atomic operations.

2.6.4 iBFS on CPUs

In principal iBFS can be implemented on CPUs. Specifically, joint traversal and

GroupBy can follow the same design on GPUs. One notable difference is that iBFS

would need atomic operation on CPUs for the multi-thread bitwise operation. Note

that [49] does not need atomic operations because it is based on single-thread BFS.

Generally speaking, concurrent BFS is an I/O intensive application, as it always has

many frontiers to be processed. As modern CPUs provide tens of cores and thousands

of registers [133, 134], issuing a large number of CPU threads may improve memory

57



Name Abbr. Description # Vertices (M) # Edges (M) Diameter Directed
Facebook FB Facebook user to friend connection 16.8 421 10 Y
Friendster FR Friendster online social network 16.8 439.2 25 Y
Gowalla GO Gowalla online social network 0.2 1.9 – N
Hollywood HW Hollywood movie actor network 1.1 115 10 N
Kron-20-512 KR0 Kronecker generator 1 1073.7 6 N
Kron-21-256 KR1 Kronecker generator 2.1 1073.7 7 N
Kron-22-128 KR2 Kronecker generator 4.2 1073.7 7 N
Kron-23-64 KR3 Kronecker generator 8.4 1073.7 7 N
Kron-24-32 KR4 Kronecker generator 16.8 1073.7 8 N
LiveJournal LJ LiveJournal online social network 4.8 69.4 15 N
Orkut OR Orkut online social network 3.1 234.4 9 N
Pokec PK Pokec online social network 1.6 30.1 11 Y
R-MAT RM GTgraph: R-mat generator 2 256 6 Y
Twitter TW Twitter follower connection 16.8 186.4 17 Y
Wikipedia WK Wikipedia page links in 2007 3.6 45 12 Y
Wiki-Talk WT Wikipedia talk network 2.4 5.0 – Y
YouTube YT YouTube online social network 1.1 6.0 – N

Table 2.1: Graph Specification

throughput but inevitably would incur high overhead of context switches. On the

other hand, GPUs not only provide a large quantity of small cores coupled with huge

register files, e.g., 2,880 cores and 983,040 registers on NVIDIA Kepler K40 GPUs, but

also support zero-overhead context switch [9]. As we will present shortly, compared

to the CPU-based implementation, GPU-based iBFS runs 2× faster on average on

various graphs.

2.7 Enterprise Experiments

We have implemented Enterprise in 3,000 lines of code in C++ and CUDA. The

source code is compiled with NVIDIA nvcc 5.5 and GCC 4.4.7 with the optimization

flag of O3. In this work, we use three GPUs: NVIDIA Kepler K40, K20 and Fermi

C2070. We perform our tests on the graphs described in Table 2.1. All the graphs are

represented by compressed sparse row (CSR) format. The datasets that provide edge

tuples are transformed into the CSR format, with the sequence of the edge tuples

preserved. The majority of the graphs are sorted, e.g., Twitter and Facebook. We

do not perform pre-processing such as removing duplicate edges or self-loops. All the

data is represented by uint64 type, loaded into GPU’s global memory. The timing

starts when the search key is given to the GPU kernel and ends when the search is

completed and written into the GPU memory. For each experiment, we run BFS

64 times on pseudo-randomly selected vertices and calculate the mean. The metric

58



traversed edges per second (TEPS) is computed as follows: Let m be the number of

directed edges traversed by the search, counting any multiple edges and self-loops, and

t be the time elapsed during BFS search mentioned above. Then, TEPS is calculated

by m/t.

2.7.1 Graph Benchmarks

We use a total of 17 graphs in this paper, as summarized in Table 2.1, which have

vertices ranging from 1 to 17 million and edges from 30 million to over 1 billion.

For an undirected graph, we count each edge as two directed edges. Eleven real

world graphs are included such as Facebook [135], Twitter [7], Wikipedia [136], as

well as the LiveJournal, Orkut, Friendster, Pokec, YouTube, Wiki-Talk and Gowalla

social network graphs from the Stanford Large Network Dataset Collection [137]. In

addition, we utilize two widely used graph generators, Kronecker [83] and Recursive

MATrix (R-MAT) algorithm [69] [138]. Both generators take four possibilities A, B,

C and D = 1.0 − A − B − C. The Kronecker generator produces the Kron-Scale-

EdgeFactor graphs that have 2scale number of vertices with the average out-degree

of EdgeFactor. In this work, we use (A, B, C) of (0.57, 0.19, 0.19) for Kronecker,

and (0.45, 0.15, 0.15) for R-MAT graphs. It is worthy to point out that both real-

world and synthetic graphs exhibit small-world characteristics - as the majority of

the vertices have small out-degree and account for the small percentage of the total

number of edges, there exist a number of hub vertices with high out-degree.

2.7.2 Enterprise Performance

We implement direction-optimizing BFS with the status array approach as the base-

line (BL) since atomic operation based frontier queue would be much slower. Here

we use CTA to work on each vertex in the status array, which is much faster than

assigning a thread or warp. Figure 2.25 plots the performance improvement con-

tributed by each optimization including streamlined GPU threads scheduling (TS),

GPU workload balancing (WB), hub vertex cache (HC).

59



1
2
4
8

16
32
64

128

FB FR HW KR0 KR1 KR2 KR3 KR4 LJ OR PK RM TW WK

TE
PS

 (b
ilio

n,
 lo

g 
sc

ale
)

BL BL+TS BL+TS+WB BL+TS+WB+HC

x11.5	  
x12.3	  

x14.6	  

x7.6	  
x10.8	  

x7.1	  

x105.5	   x13.5	  x10.6	   x32.0	  

x8.6	  

x3.3	   x6.1	  
x9.0	  

0.3	  
1.0	  

0.1	   0.8	   0.2	  
0.9	  

0.5	   0.04	   0.3	  
1.0	  

Figure 2.25: Enterprise performance on various graphs. Direction-optimizing BFS on
GPU using the status array method serves as the baseline (BL). Three techniques
are represented as TS for streamlined GPU Threads Scheduling, WB for Workload
Balancing, and HC for Hub vertex Cache.

The streamlined GPU threads scheduling outperforms the baseline by 2× to 37.5×

across all graphs. In particular, Twitter (TW) obtains the biggest speedup from 0.04

to 1.5 billion TEPS. The reason is that the maximum frontier ratio in Twitter is

only 10.2%, and on average it only has 1% frontiers at each level. Kron-20-512 (KR0)

gains 2× speedup, reaching 34 billion TEPS. In general, generating the frontier queue

consumes on average 11% of the BFS run time.

The GPU workload balancing technique more than doubles the traversal rate for

all graphs, 2.8× on average beyond the first technique. For example, LiveJournal

(LJ) achieves the biggest improvement of 4.1×, from 0.9 to 3.7 billion TEPS. For

this graph, the total workload is distributed evenly so that SmallQueue contains

78% frontiers (or 22% workload), MiddleQueue has 21% frontiers (or 58% workload),

LargeQueue 1% frontiers (20% workload).

The hub vertex caching technique helps improve the performance up to 55%. Both

Facebook (FB) and Friendster (FR) see a small gain as they do not contain vertices

with extremely high out-degree, e.g., the maximum out-degree in Facebook is 9,170.

For other graphs, the improvement is more than 10%, as high as 30% to 50% for

Kronecker graphs that have thousands of vertices with more than 105 edges. This

shows that caching these hub vertices is very beneficial.

In all, Enterprise improves the TEPS of the BFS algorithm by 3.3× to 105.5×.

The highest TEPS is achieved at KR0 with over 76 billion TEPS and the smallest at

FR with 3.1 billion TEPS.

Comparison. Figure 2.35 compares Enterprise with several GPU based BFS imple-

60



 0

 2

 4

 6

 8

 10

FB KR-21-128 TW audikw1 roadCA europe.osm

42

TE
P

S
 (b

ill
io

n)

Enterprise
B40C
Gunrock
MapGraph
GraphBIG

Figure 2.26: Performance comparison.

mentations, including B40C [74], Gunrock [75], MapGraph [139] and GraphBIG [140].

We evaluate power-law graphs such as FB, TW, and KR-21-128 which has 2 million

vertices with average out-degree of 128, as well as high-diameter graphs such as au-

dikw1 [136], roadCA [137] and europe.osm [136].

For power-law graphs, Enterprise performs 4×, 5×, 9× and 74× better than

B40C, Gunrock, MapGraph and GraphBIG, respectively. For high diameter graphs,

Enterprise achieves 1.41 billion TEPS on average and outperforms Gunrock (0.72)

1.95×, MapGraph (0.25) 5.56×, GraphBIG (0.03) 42×. On these graphs, Enterprise

delivers similar perform as B40C. It runs slightly slower on europe.osm because this

graph has very small out-degrees, with the maximum out-degree of 12 and the mean

2.1.

2.7.3 Enterprise Scalability

Figure 2.32 shows both strong and weak scalability of Enterprise. We use the largest

graph from Table 2.1, i.e., KR4 to test the strong scalability. On 2, 4 and 8 GPUs,

Enterprise achieves 15, 18 and 18.4 billion TEPS, respectively, that is, a speedup of

43%, 71% and 75%.

We evaluate weak scalability in two ways, edge scale and vertex scale. When the

GPU count increases, we increase the edgeFactor – the average out-degree – with

fixed vertex count, or increase the number of vertices with the constant edgeFactor.

As shown in Figure 2.32, we achieve better scalability for edge scale, where we obtain

super linear speedup, that is, 9.1×, 96 billion TEPS with 8 GPU. This is because

61



���

���

���

����

�� �� �� �� �� �� �� �� �� ��
�
�
�
�

�
��
���
��
�
�

���������

���������������
�������������
�����������������
������������������

Figure 2.27: Strong and weak scalability of Enterprise.

0

20

40

60

80

FB FR HW LJ OR PK TW WK KR0

ld
st

_f
u_

ut
iliz

at
io

n 
(%

) BL BL+TS BL+TS+WB

0
2
4
6
8

10
12

FB FR HW LJ OR PK TW WK KR0

st
al

l_
da

ta
_r

eq
ue

st
 (%

) Without HC With HC

(a) Load store unit utilization (b) Stall

0

1

2

FB FR HW LJ OR PK TW WK KR0

IP
C

Without HC With HC

70

80

90

100

110

FB FR HW LJ OR PK TW WK KR0

Po
w

er
 (W

)

BL BL+TS
BL+TS+WB BL+TS+WB+HC

(c) IPC (d) Power

Figure 2.28: Microarchitecture profiling statistics of Enterprise: (a) Load/store func-
tion unit utilization (b) Stall caused by data request (c) IPC (d) GPU power con-
sumption.

when edgeFactor increases, the number of hub vertices increases in the graph too and

the hub vertex cache will reduce more global memory accesses. On the other hand,

direction-switching can possibly avoid more unnecessary edge checks.

62



2.7.4 Analysis of GPU Counters

As BFS is an I/O-intensive algorithm, it is critical that GPU threads are able to

access data quickly. As shown in Figure 2.28(a), our frontier techniques (TS and WB)

significantly improve the utilization of GPU load/store function units by average 8%

and 24% respectively, reaching as high as 68%. Furthermore, our hub vertex caching

(HC) presented in Figure 2.28(b), reduces the stalls of data requests by 40%, the

occurring of such events drops from 4.8% to 2.9%. This also explains the double of

IPC observed on GPUs in Figure 2.28(c).

For comparison, we also profile [74] on Hollywood graph, which delivers 2.7 billion

TEPS while consumes 40 Watts power, achieves 40% utilization of load/store unit

and 0.68 IPC. On the same graph, Enterprise achieves 50% load/store unit utilization

and 1.32 IPC, with 12 billion TEPS and 76 Watts power consumption.

Figure 2.28(d) plots GPU’s power consumption corresponding to different tech-

niques. Here we only report GPU’s power to understand the impact of each technique.

On average, the power consumption drops from 86 to 81 Watts with our GPU threads

scheduling, the biggest saving of 14.5 Watts on the Twitter graph. This comes mostly

from better IO performance and fewer idle GPU threads in the system. The other

two techniques (WB and HC) further reduce the power to 78 Watts.

2.8 iBFS Experiments

iBFS is implemented in 4,000 lines of CUDA and C++ codes, extending a GPU-based

high-performance BFS implementation – Enterprise [1]. Since it supports both top-

down and bottom-up BFS, our iBFS can be easily configured to support conventional

top-down BFS and traverse weighted graphs. iBFS is compiled using g++ 4.4.7, MPI

(MVAPICH2) and NVIDIA CUDA 6.0 with the -O3 flag. Our system is evaluated

on NVIDIA Kepler K40 GPUs on our local cluster with Intel Xeon E5-2683 CPUs,

and later on the Stampede supercomputer on NSF Extreme Science and Engineering

Discovery Environment (XSEDE) program, where iBFS runs from 1 to 112 machines

each of which is equipped with one NVIDIA Kepler K20 GPU.

63



 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18

FB

PK

E
dg

e 
C

ou
nt

 (m
ill

io
n)

Vertex Count (million)

FR

HW
RD

KG0

KG1

KG2

LJ

ORRM
TW

WK

Figure 2.29: Graph benchmarks.

We measure the execution time from when all the data are loaded in GPU memory

to the traversal is completed and the results are stored in GPU memory. All the

execution uses uint64 data type. We use the metric of traversed edges per second

(TEPS) to measure the performance, which is calculated by the ratio of the number

of directed edges traversed by the search, counting any multiple edges and self-loops,

and the time elapsed during iBFS execution. In the tests, iBFS performs breadth-first

search from all the vertices.

2.8.1 Graph Benchmarks

In this work we use total 13 graph benchmarks to evaluate iBFS, which as summarized

in Figure 2.29 have upto 17 million vertices and 1 billion edges. In particular, there are

seven real-world graphs of well-known online social networks. Facebook (FB) [135], a

user to friend connection graph, contains 16,777,216 vertices and 420,914,604 edges.

Twitter (TW) [7] is a follower connection graph, that is, if user v follows user u,

(v, u) is considered as an edge. It also has 16,777,216 vertices and 196,427,854 differ-

ent edges. Wikipedia (WK) [136] is a inter-website hyper-link graph, which consists

of 3,566,908 vertices and 45,030,389 edges. We also obtain four popular online so-

cial network graphs, i.e., LiveJournal (LJ), Orkut (OR), Friendster (FR), and Pokec

(PK), from Stanford Large Network Dataset Collection [137]. Specifically, LJ con-

tains 4,847,571 vertices and 137,987,546 edges. OR has 3,072,627 vertices with an

average outdegree of 75.27. FR contains 16,777,212 vertices and 439,147,122 edges.

PK is the smallest graph with 1,632,804 vertices and 30,622,564 edges.

64



 0

 100

 200

 300

 400

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK

506
729

640
832

TE
P

S
 (b

ill
io

n)
Sequential
Naive
Joint traversal
Bitwise operation
GroupBy

Figure 2.30: Traversal rate comparison between Sequential BFS, Concurrent BFS,
Joint Traversal, Bitwise Optimization, and GroupBy.

In addition, we generate three types of synthetic graphs with Graph 500 gen-

erator [69, 83, 65], namely, KG0, KG1 and KG2. The default value of (A, B, C)

parameter is (0.57, 0.19, 0.19) per the requirement of Graph 500 [83]. Specifically,

KG0 stands for the high average outdegree graphs, i.e., its average outdegree is 1024

and vertex count is 1,048,576. KG2 serves as the biggest graph in this paper, i.e.,

with both biggest vertex and edge count – 16,777,216 vertices and 1,073,741,824 edges.

KG1 has 8,388,608 vertices and 603,979,776 edges. We also use the DIMACS graph

generator [138] to generate the RM and RD graphs in this paper. RM follows the

same theory from Graph 500 [69, 83, 65] but with a different (A, B, C) set of (0.45,

0.15, 0.15). RM has 2,097,152 vertices and 268,435,456 edges. RD [141] graph has

uniform outdegree distribution, i.e., each vertex has roughly the same outdegree. RD

contains 11,796,480 vertices and 188,743,680 edges.

All these graphs are stored in the Compressed Sparse Row (CSR) format. For

graphs that are provided in the edge list format, we translate them into CSR while

preserving the edge sequence. For undirected graphs, each edge is considered as two

directed edges. For directed graphs, we also store the reversed edges to support the

bottom-up traversal. The size of these graph ranges from 478 MB (PK) to 8.2 GB

(KG2) when using long integer (8 bytes) to represent the vertex id.

2.8.2 iBFS Performance

We evaluate three techniques, joint traversal, bitwise operation, and GroupBy, and

compare against running all BFS instances sequentially (sequential) or in parallel

without any optimization (naive), both of which are based on state-of-the-art BFS

65



 100

 150

 200

 250

 300

 1  4  16  64  256  1024  4096

TE
P

S
 (b

ill
io

n)
 Number of groups (log scale)

GroupBy
Random grouping

Figure 2.31: Traversal performance when running different number of BFS groups on
HW.

implementation such as Enterprise [1]. In this test, we run APSP on all the graphs. As

shown in Figure 2.30, sequential and naive implementation perform roughly the same.

On average, the later traverses 1.05× faster, but a worse performance is observed in

HW, KG1, KG2 and RM graphs, with only 78% of sequential performance on KG1.

In iBFS, joint traversal delivers 1.4× speedup compared to sequential implemen-

tation. The biggest performance gain of 2.6× speedup comes for RD, from 4.4 to

11.3 billion TEPS while the smallest is 1.03× speedup for PK . For other graphs, the

performance improvement is more than 10%. On the other hand, bitwise iBFS, on

average speedup the traversal by 11×. While the smallest improvement is 6.4× on

HW from 11.7 to 75 billion TEPS, the biggest improvement is observed on RM – 18

× speedup from 36 to 640 billion TEPS. Astoundingly, Groupby improves iBFS by

additional 2× on average beyond bitwise optimization, with the highest traversal rate

of 832 billion TEPS on RM.

In this test, iBFS greatly reduces the run time of APSP on all graphs from average

123 hours of sequential traversal to 5.5 hours, where joint traversal helps to reduce to

87.8 hours, bitwise optimization 11.2 hours, and GroupBy the rest. GroupBy incurs

a minimal processing time of less than 0.1 second on average.

We further evaluate the traversal performance of iBFS as the number of i varies,

that is, running MSSP with varied number of source vertices. We observe similar

performance on all the graph benchmarks. Figure 2.31 presents the TEPS when

running different number of BFS groups on the HW graph, where the total number

of BFS instances equals to the multiply of the number of groups and the group size.

66



 1

 16

 32

 48

 64

 80

 96

 112

 1  16  32  48  64  80  96  112

S
pe

ed
up

GPU count

Ideal speedup
RD
FB
OR
TW
RM
Average

Figure 2.32: Scalability of bitwise iBFS from 1 to 112 GPUs.

Clearly, as there are more BFS instances to run, the benefit of GroupBy – the gap

between GroupBy and random grouping – increases because better groups can be

formed. Specifically, with randomly formed groups, the traversal rate fluctuates in

the range of 75 and 90 billion TEPS, which is raised to 288 billion TEPS with the

help of GroupBy.

2.8.3 iBFS Scalability

In this test, we aim to evaluate the scalability of iBFS on a large number of distributed

GPUs on the Stampede supercomputer at TACC. Clearly, as long as different GPUs

work on independent BFSes, there is no need for inter-GPU communication. There-

fore, the key challenge here is achieving workload balance on GPUs, especially when

each individual BFS may inspect different number of edges during bottom-up. The

longest time consumption of all the GPUs is reported in this test.

For the five graphs tested, iBFS achieves good speedup from 1 to 112 GPUs (the

total number of GPUs on Stampede)2. As shown in Figure 2.32, from one to two

GPUs, the biggest speedup, as expected, is from RD of 1.97× because RD graph

has the most balanced workload. And even the smallest speedup from OR is 1.9×.

From one to four GPUs, the average speedup is 3.8× with the smallest speedup from

OR of 3.6× while the biggest from RD graph – 3.9×. As the GPU count increases,

workload imbalance slowly emerges and begins to negatively affect the performance.

Specifically, iBFS achieves an average of 85× speedup for 112 GPUs. Again, RD gets

2As it took all the GPUs on Stampede, we were only given a small time window to conduct this
test.

67



 0

 1

 2

 3

 4

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK

13.1 8.0 8.3

G
lo

ba
l s

to
re

 tr
an

sa
ct

io
n 

co
un

t (
bi

lli
on

)

Private FQ
Random JFQ
GroupBy JFQ

Figure 2.33: Global store transaction count during the generation of private frontier
queue, random joint frontier queue and GroupBy joint frontier queue.

the biggest speedup, i.e., 108×.

In all, iBFS achieves the average traversal rate of 16,509 billion TEPS across all

the tested graphs with the maximum 57,267 billion TEPS on RM.

2.8.4 Joint Traversal and GroupBy

This section uses the NVIDIA profiler [64] to measure the impact of joint traversal

and GroupBy on memory accesses. Having a joint frontier queue with only one copy

of shared frontiers reduces the potentially large number of global memory writes, com-

pared to having private frontier queues for each BFS instance. Figure 2.33 shows the

number of global store transactions during the frontier queue generation of 1,024 BFS

instances. Using private frontier queue, i.e., private FQ, executes 4 billion transac-

tions on average across all the graphs, while joint frontier queue with random groups,

i.e. random FQ, only needs one fourth transactions. The biggest reduction of over

11× is observed in the KG2 graph, from 8.3 billion to 700 million, the smallest saving

is 1.2× on HW, i.e., 720 million to 580 million. With GroupBy, iBFS further saves

the global stores by 2.6× with the largest from HW of 4×.

Combining joint status array with careful thread scheduling introduces significant

performance benefits, as iBFS minimizes costly memory operations. Figure 2.34

exhibits global load transactions per request during traversal before and after this

optimization. Note that global store transactions per request exhibits similar trend.

Since joint status array of iBFS always coalesces the inspections and updates from

68



 0

 1

 2

 3

 4

 5

 6

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK
G

lo
ba

l l
oa

d 
tra

ns
ac

tio
ns

 p
er

 re
qu

es
t

Naive
Joint traversal

Figure 2.34: Load transaction count per request.

contiguous threads into a single global memory transaction, our tests across 1,024

BFS instances show that we are able to reduce on average from four loads to a single

load. The benefits add up quickly considering a large number of memory operations

in concurrent BFS. On average each BFS instance executes 50 million of global load

transactions.

2.8.5 Bitwise Operation

 0

 1

 2

 3

 4

 5

 6

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK

S
pe

ed
up

Random grouping
GroupBy

Figure 2.35: The speedup of our bitwise operation.

We implement the bitwise operation as in [49] and use it as baseline running all

the benchmarks in our paper. Figure 2.35 plots the speedup of our bitwise operation.

Even with random groups, we achieve 40% speedup, and our bitwise operation enjoys

a better speedup with the outdegree-based GroupBy rules, i.e., 2.6×. Specifically,

in random grouping, the maximum and minimum speedup is 2.5× of KG2 and 2%

of FR. In comparison, the maximum and minimum speedup in GroupBy is 5.5× of

KG1 and 15% of RD graph. Additional improvement from Groupby comes from

the combined effect of high sharing ratio across grouped BFS instances and early

69



termination enabled by bitwise traversal, which as a result allows concurrent instances

to complete together and as early as possible.

 0

 20

 40

 60

 80

 100

 120

 140

FB FR HW KG0 KG1 KG2 LJ OR PK RD RM TW WK

G
lo

ba
l l

oa
d 

tra
ns

ac
tio

ns
 (m

ill
io

n) Joint traversal
Bitwise operation

Figure 2.36: Total number of load transactions.

In addition, we evaluate the impacts on the total number of global load transac-

tions by bitwise traversal. Because bitwise status array consolidates the statuses of

multiple (128 in our case) vertices into a single variable, we reduce the global load

transactions of 1,024 BFS instances by 40%, i.e., from 53 to 38 million on average

presented in Figure 2.36.

2.8.6 Comparison of State of the Art

We have implemented two CPU-based concurrent BFS, namely MS-BFS [49] and our

own iBFS, both of which run 64 threads in total. In addition, we compare our GPU-

based iBFS with B40C [74] and SpMM-BC [82]. B40C runs a single BFS instance

on GPUs and has similar performance as the sequential or naive implementation

presented in Figure 2.30, and SpMM-BC uses a simple GPU-based concurrent BFS

to calculate betweenness centrality. Figure 2.37 presents the performance of all five

implementations when running APSP on six different graphs.

CPU-based iBFS is significantly faster than MS-BFS thanks to the techniques

such as GroupBy and early termination. The biggest speedup is achieved for the

KG0 graph, where MS-BFS obtains 120 billion TEPS while our CPU-based iBFS

reaches 397 billion TEPS. iBFS also achieves an average improvement of 45% on

other five graphs. On GPUs, iBFS traverses on average 2× faster than SpMM-BC,

and 19.3× than B40C. For graphs KG0 and HW, iBFS delivers about 700 and 300

70



 0

 100

 200

 300

 400

FB HW KG0 LJ OR TW

500 729

CPU

GPU

TE
P

S
 (b

ill
io

n)

MS-BFS
CPU iBFS

B40C
SpMM-BC
GPU iBFS

Figure 2.37: Comparison of CPU and GPU implementations.

TEPS respectively, greatly outperforming the other two implementations. Compared

to the CPU-based implementation, GPU-based iBFS runs 2× faster on average across

six different graphs.

Dataset
CPU GPU

MS-BFS CPU-iBFS B40C GPU-iBFS
FB 19.2 16.5 302.8 14.3

KG0 1.85 0.56 2.9 0.31
OR 4.1 3.22 25.3 1.1
TW 2.1 2.7 27.8 0.9

Table 2.2: Runtime (hours) of 3-hop reachability index.

2.8.7 Application: Reachability Index

To illustrate the broader application of iBFS on graph algorithms, in this paper we

evaluate the benefits of using iBFS to construct the index for answering graph reach-

ability queries, which computes the first k levels BFS for a large amount of selected

vertices. Table 2.2 lists the runtimes of various implementations for constructing the

index for 3-hop reachability. Clearly, GPU-based iBFS outperforms other concurrent

BFS systems on four different graphs. Specifically, it is 21×, 3.3× and 2.2× faster

than B40C, MS-BFS and CPU-based iBFS, respectively.

71



Chapter 3

SIMD-X Programming and

Processing of Graph Algorithms on

GPUs

3.1 Introduction

The advent of big data represents both a challenge and opportunity, from which ex-

tracting useful knowledge within an acceptable time envelope remains elusive. Many

applications leverage graphics processing units (GPUs) for performance acceleration,

where huge success comes from exploiting data-level parallelism in these applications,

that is, the single instruction multiple data (SIMD) model of GPUs.

Implicitly, the traditional SIMD model assumes regular programming and pro-

cessing, where not only the same instruction is executed but also the same amount of

work is performed on each piece of data. Unfortunately, this assumption is no longer

valid for many emerging irregular applications, especially graph analytics the focus

of this work. Such applications do not conform to the SIMD model, where different

amount of work, or completely different work, need to be performed on the data in

parallel.

To enable accelerated graph computation on GPUs, this work advocates a new

72



0
a b c d e f g h i

Distance array
Vertex

b

f

ca

ed

g h i

1

5

1
2

1

1
2

3 4 6

b

f

ca

ed

g h i

b

f

ca

ed

g h i

1 5 6 1 3
a b c d e f g h i

b

f

ca

ed

g h i

b

f

ca

ed

g h i

1 4 6 1 3 4 6 7 9
a b c d e f g h i

1 4 5 1 3 4 6 7 9
a b c d e f g h i

b

f

ca

ed

g h i

0 4 5 1 3 4 6 7 9
a b c d e f g h i

0 5 1
a b c d e f g h i

(a) Initialization (c) Iteration 2 (d) Iteration 3 (e) Iteration 4 (f) Iteration 5(b) Iteration 1

Updated vertex

Active vertex

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

1

5

1
2

1

1
2

3 4 6

Figure 3.1: SSSP on a graph, with nine vertices {a, b, c, d, e, f, g, h, i} and ten undi-
rected edges (with weights). SSSP iteratively computes on the graph and generates
the distance array. Particularly, heavy and light shadows represent active and most
recently updated vertices, respectively.

parallel framework, SIMD-X, for the programming and processing of single instruction

multiple, complex, data on GPUs. At the heart of SIMD-X is the decoupling of graph

programming and processing, that is, SIMD-X utilizes the data-parallel model for ease

of programming of graph applications, while enabling system-level optimizations to

deal with task-parallel complexity at run time.

With SIMD-X, a programmer simply needs to define what to do on which data,

without worrying about issues arisen from irregular memory access and control flow.

Yet, SIMD-X is still able to deliver exceptional performance, e.g., 7× faster than

Gunrock [75] with 5× less lines of code (LOC). SIMD-X consists of three major

components:

First, SIMD-X utilizes a new Active-Compute-Combine (ACC) programming model

that asks a program to define three data-parallel functions: the condition for deter-

mining an active vertex, computation to be performed on an associated edge, and

combining the updates. SIMD-X is slightly different from the traditional edge-centric

model, that is, instead of immediately updating vertex status with an atomic opera-

tion, the framework takes care of the updates and applies performance optimizations

as in vertex-centric processing. As we will show later, ACC is able to support a large

variety of graph algorithms from breadth-first search, k-core, to belief propagation.

Second, SIMD-X relies on just-in-time (JIT) task management which is able to

balance parallel workloads across different GPU cores, with minimal overhead. A

good task list can increase not only parallelism, but also sequential memory access

for the computation of next iteration, both of which are crucial for high-performance

73



computing on GPUs. To this end, we have designed new online and ballot filters,

each of which excels at the complementary scenarios, i.e., the former favors a small

amount of tasks while the latter larger tasks. At runtime, SIMD-X judiciously selects

the more suitable filter to assemble the active work list for the next iteration. As a

result, SIMD-X is able to deliver up to two orders of magnitude speedup (average

16×) across various algorithms and graphs.

Third, SIMD-X designs another new technique of push-pull based kernel fusion

which aims to further accelerate graph computing by reducing kernel invocation over-

head and global memory traffic. Instead of aggressively fusing the algorithm into one

giant kernel, SIMD-X fuses the kernels around the pull and push stages within each

computation. The evaluation shows that the new fusion technique can reduce the

register consumption by half and thus double the configurable thread count, lead-

ing to 42% and 25% performance improvement over non-fused and aggressive fusion,

respectively.

SIMD-X is different from prior work in several aspects. First, in order to use

existing systems efficiently, a programmer needs to possess an in-depth knowledge

of GPU architecture [142, 9], e.g., Gunrock requires explicit management of GPU

threads and memory [75], and B40C [74] and Enterprise [1] contains thousands of

lines of CUDA code for BFS specific optimizations. One of the goals of this work

is to provide a simple programming model and delegate the responsibility of task

management to SIMD-X. Second, current systems either ignore workload imbalance

as in [143, 120], or resolve it reactively as in [75, 109], both of which result in

undesired system performance. Lastly, because GPUs lack support for global syn-

chronization, existing systems [144, 75, 1, 2] rely on the multi-kernel design, which

comes with considerable overhead, especially for graph algorithms with high iteration

count. SIMD-X addresses these challenges with the help of new filters, as well as a

deadlock-free software barrier.

The rest of this chapter is organized as follows: Section 3.2 discusses the related

work. Section 3.3 presents the challenges of constructing SIMD-X on GPUs. Sec-

tion 3.4 describes the ACC model. Section 3.5 presents our just-in-time management

74



GPU systems LOC Task management Kernel fusion

Luo et al. [106] 2,000 Atomic filter No
B40C [74] 5,000 Batch filter No
CuSha [143] 200 - No
Enterprise [1] 3,000 Strided filter No
Gunrock [75] 600 Batch filter No
SIMD-X 80 Just-in-time control Push-pull based

Table 3.1: Summary of related work.

approach and Section 3.6 discuses the kernel fusion design. We present the graph

algorithms in Section 3.7 and the evaluation results in Section 3.8.

3.2 Related Work

Recent advance in graph computing falls broadly in algorithm design innovation [60,

72], framework developments [145, 112, 146, 147, 5, 76, 148, 149, 71, 150, 151, 152,

6, 153, 154] and accelerator based optimizations [155, 156, 157, 158, 1, 74, 143]. In

this work, we discuss relevant work from three aspects – programming model, task

management and kernel fusion. Table 3.1 compares five representative projects with

SIMD-X.

Besides edge and vertex centric models, there are also other models that make

various trade-offs between simplicity and performance. For instance, “think like a

graph” [159] requires each vertex to obtain the view of the entire partition on one

machine in order to minimize the communication cost. Furthermore, domain specific

programming language systems, such as Galois [6], Green-Marl [152] and Trinity [150],

allow programmers to write single-threaded source code while enjoying multi-threaded

processing. In comparison, SIMD-X decouples the goal of programming simplicity

and performance: with ACC, SIMD-X ultimately designs a data-parallel abstraction

for deploying irregular graph applications on GPU. With JIT task management and

push-pull based kernel fusion, SIMD-X pushes the performance towards a magnitude

faster than state-of-the-art CPU and GPU frameworks.

Task management is an important optimization for GPU-based graph computing.

75



Besides batch filter [75, 74], there also exist other task management approaches –

strided filter [1, 2] and atomic filter [106]. Particularly, strided filter resembles bal-

lot filter but the former one experiences strided memory access when scanning the

metadata thus performs up to 16× worse than ballot filter. Atomic filter relies is

similar to online filter but it relies on automic operation to put active vertices into

global active list which suffers from orders of magnitude slow down than online filter.

Besides ballot and online filter bests batch, stride and atomic filter, SIMD-X goes

further via introducing a JIT controller to dynamically use online filter and ballot

filter and further improve the performance.

Kernel fusion affects applications far beyond graph computations. SIMD-X demon-

strates its benefits in graph computing and machine learning (MLP) applications.

SIMD-X is closely related to global software barrier [160, 161]. However, previous

work fails to identify the deadlock issue in this global software barrier problem, thus

no solution towards this issue. In contrast, SIMD-X unveils, systematically analyzes,

and resolves this problem. To avoid high register consumption, SIMD-X further se-

lectively fuse kernels via exploiting the special kernel launching patterns of graph

algorithms. It is also important to mention existing work [144] that only fuse kernels

to barrier boundary. In comparison, SIMD-X fuses kernels across barriers.

3.3 SIMD-X Challenges and Architecture

3.3.1 Graph Computing on GPUs

Generally speaking, regular applications present uniform workload distribution across

the data set. As a result, such applications lend themselves to the data-parallel GPU

architecture. For development and evaluation, this work mainly uses NVIDIA GPUs,

which have tens of streaming processors and in total thousands of Compute Unified

Device Architecture (CUDA) cores [9, 63]. Typically, a warp of 32 threads execute the

same instruction in parallel on consecutive data. For regular application, program-

ming and processing is simple, e.g., dense matrix algebra as shown in Figure 3.2(a).

76



GPU

(b) Irregular application(a) Regular application

Dense matrix

GPU

x x x x
x x x x
x x x x

b

f

ca

ed

g h i

1
5
1

2

1

1
2

3 4 6

Graph algorithm

Figure 3.2: Mapping regular versus irregular applications on GPUs

On the other hand, task management for irregular applications is challenging on

GPUs. In this work, we focus on a number of graph algorithms such as breadth-first

search, k-core, and belief propagation. Here we use one algorithm – Single Source

Shortest Path (SSSP) – to illustrates the challenges. Simply put, a graph algorithm

computes on a graph G = (V , E, w), where V , E and w are the sets of vertices,

edges, and edge weights. The computation updates the algorithmic metadata which

are the states of vertices or edges in an iterative manner. A typical workflow of SSSP

is shown in Figure 3.1. Initially, SSSP assigns the infinite distance to each vertex in

the distance array, which is represented as blank in the figure. Assuming the source

vertex is a, the algorithm assigns 0 as its initial distance, and now vertex a becomes

active. Next, SSSP computes on this vertex, that is, calculating the updates for all

the neighbors of vertex a. In this case, vertices {b, d} have their distances updated to

5 and 1 in the distance array. At the next iteration, the vertices with newly updated

distances become active and perform the same computation again. This process

continues until no vertex gets updated. Different from breadth-first search, SSSP

may update the distances of some vertices across multiple iterations, e.g., vertex b is

updated in iteration 1 and 3.

In this example, not every vertex is active at all time, and vertices with different

degrees (number of edges) yield varying amounts of workloads. For instance, at

iteration 3 of Figure 3.1(d), one thread working on vertex c computes two neighbors,

while another thread on vertex e four neighbors. As a result, a complex mapping

as shown in Figure 3.2(b) is required for high-performance processing, and to do so

necessitates in-depth knowledge from a programmer on GPUs.

77



GPU

BFS BP k-Core MLP

ACC programming model

Deadlock-free software global barrier

JIT control

Selective
kernel
fusion

Ballot filterOnline filter

Just-In-Time task management

Push-Pull based kernel fusion

PageRank SpMV SSSP

SIMD-X

…
Graph algorithm

Figure 3.3: SIMD-X architecture

3.3.2 Architecture

SIMD-X is motivated to achieve two goals simultaneously: providing ease of program-

ming for a large variety of graph algorithms, whereas enabling fine-grained optimiza-

tion of GPU resources at the runtime. Figure 3.3 presents an overview of SIMD-X

architecture. To achieve the first goal, SIMD-X utilizes a simple yet powerful Active-

Compute-Combine (ACC) model. This data-parallel API allows a programmer to

implement graph algorithms with tens of lines of code (LOC). Prior work requires

significant programming effort [74, 1, 75], or runs the risk of poor performance [143].

In SIMD-X, high-performance graph processing on GPUs is achieved through the

development of two components: (1) JIT task management, which is responsible

for translating data-parallel code to parallel tasks on GPUs. Essentially, SIMD-X

“filters” the inactive tasks and groups similar ones to run on the underlying SIMD

architecture. In particular, SIMD-X develops online and ballot filters for handling

different types of tasks, and dynamically selects the better filter during the execution

of the algorithm. And (2) Pull-push based kernel fusion. Graph applications are

iterative in nature and thus require synchronizations. Fusing kernels across iterations

would yield indispensable benefits, because kernel launching at each iteration incurs

non-trivial overhead. In SIMD-X, we observe that with aggressive kernel fusion,

register consumption would increase dramatically, lowering the occupancy and thus

performance. To this end, SIMD-X deploys kernel fusion around pull and push stages

of each graph computation, seeking a sweet spot that not only maximizes the range

of each kernel fusion but also minimizes the register consumption. It is worthy noting

78



that we also address the deadlock issue faced by software global barrier in SIMD-X.

// Task management done in SIMD-X
Active(metadata M, vertex v)
• return is v active based on M"
Compute (metadata M, edge (v,u)) 
• return compute based on 𝑀$, 𝑀($,'), and	𝑀'
Combine(update update$→2)
• merge	all	update"→'

while not done
• for all Active vertices v

• //for all edges e of v
• Combine(Compute (e))

//	Require multiple versions for different thread granularity
vertex_scatter (vertex v)
• send update over outgoing edges e of v

//	Require multiple versions for different thread granularity
vertex_gather (vertex v) 
• apply updates from incoming edges of v

while not done
• for all active vertices v

• vertex_scatter (v)
• for all vertices v with updates

• vertex_gather (v) 

//	One thread per edge
edge_scatter (edge e) 
• send update over e // outgoing edges
//	One thread per edge 
update_gather (update u)
• atomically apply update u to 

e.destination

while not done 
• for all outgoing edges e 

• edge_scatter (e) 
• for all updates u 

• update_gather (u)

(b) Vertex-centric model(a) Edge-centric model (c) ACC model

User-defined functions

System functions

Figure 3.4: Different Programming Models

3.4 ACC Programming Model

When it comes to graph computing, there are two main programming models: vertex-

centric vs. edge-centric. “Think like a vertex” [145, 76] focuses on tasks on active

vertices in a graph, whereas “think like an edge” [151, 153] iterates on edges and sim-

plifies programming. SIMD-X aims to achieve the dual goal of ease of programming

in edge-centric model, and efficient workload scheduling in vertex-centric model.

3.4.1 Background

Edge-centric model is initially introduced by external-memory graph engine X-

stream [151] to improve IO performance. It requires a programmer to define two

functions needed on each edge, edge scatter and edge gather. As such, this model

schedules threads by the edge count. Figure 3.4(a) shows SSSP with such a model.

Particularly, one thread needs to send the distance value of the source vertex and the

weight of the outbound edge to the destination vertex (edge scatter), which atomically

applies the new updates in edge gather.

Edge-centric processing is a good fit for GPUs, because its data-level parallelism

matches the SIMD. Importantly, this model allows the graph processing system like

SIMD-X to handle additional functions, e.g., scheduling the tasks, and launching

79



the kernels. For this reason, SIMD-X extends edge-centric model to leverage this

opportunity.

However, edge-centric model, albeit a straightforward mapping, would not run

efficiently on GPUs right out of the box. For one, the scatter function requires the

atomic operation to avoid the write-after-write data hazard across different threads,

which is understandably expensive on GPUs. More critically, since not every edge is

active at each iteration, assigning one GPU thread per edge would lead to significant

waste of GPU resources. To address this problem, one shall be able to identify active

edges at runtime and dispatch GPU threads to work only on them. However, for

graph algorithms, identifying active vertices would come more naturally, as we will

see shortly.

Vertex-centric model focuses on the calculation to be done on the vertices, instead

of the edges. Similarly, this model presented in Figure 3.4(b) contains two functions,

vertex scatter that defines what operations should be done on this vertex, and ver-

tex gather that applies the updates on the vertex. This model has been adopted by

a number of existing projects, e.g., Pregel [145], GraphLab [146], PowerGraph [112],

GraphChi [147], FlashGraph [76], and GridGraph [148], as well as GPU-based imple-

mentation such as CuSha [143] and Gunrock [75].

While two models are conceptually equivalent, their performance vary drastically

in practice. The advantage enjoyed by vertex-centric model can be attributed to

two techniques. First, the vertex gather function can avoid locks by first combining

the updates from the incoming edges. Second, the systems using this model require

sophisticated task management to create a work lists of active vertices (active list), as

well as to balance the workloads across different groups of GPU threads (e.g., warp,

CTA, or Grid). The complexity of such technique is evidenced by the high LOCs in

many systems presented in Table 3.1. It is important to note that current systems

cannot hide this complexity from programmers, because one has to schedule GPU

threads, statically or dynamically, within the verex scatter and verex gather functions,

leading to multiple versions of the same function for different thread granularity.

In contrast, the ACC model in SIMD-X combines the advantages of both models,

80



Active (vertex v){
• return metadata_curr[v] 
• != metadata_prev[v];
}
Compute (edge e, weight w){
• old_dist = metadata_curr[e.dest];
• new_dist = metadata_curr[e.src] + w;
• return old_dist > new_dist ? 

• new_dist: old_dist;
}
Combine (metadata_t *A){
• return min(A);
}

Active (vertex v){
• return true
}

Compute (edge e, weight w){
• vect_value = metadata_prev[e.dest];
• return vect_val * w;
}

Combine (metadata_t *A){
• return sum(A);
}

Active (vertex v){
• return v ∈ active layer;
}

Compute (edge e, weight w){
• if push   return metadata[src]*w
• else return "#

"$_&'()*)()
⋅ "&'()*)()
"&'()*)()_,-'.

⋅ "&'()*)()
"/

}
Combine (metadata_t *A){
• if push  return sigmoid(sum(A));
• else       learning_rate *sum(A)
}

(c) MLP (E is the prediction errors of vertices in last layer)(a) BP (b) SSSP

Figure 3.5: ACC model with BP, SSSP, and MLP

differentiating the operations on a vertex, edge and update. At the meanwhile, task

management is handled by SIMD-X, which will be presented in later sections.

3.4.2 Overview

The new ACC model contains three functions: Active, Compute, and Combine.

ACC supports a wide range of graph algorithms and requires much fewer lines of

code compared to prior work (Table 3.1). In this following, we will discuss the three

functions.

Active allows a programmer to specify the condition whether a vertex is active.

Formally it can be defined:

∃v ← active(Mv, v)

where v is the vertex ID and Mv represents its metadata. Depending on the algorithm,

the Active function may vary. Figure 3.5 shows three examples. Belief propagation

(BP) is simple which treats all vertices as active. In comparison, SSSP considers the

vertices active when their current metadata differs from the prior iteration. On the

other hand, multi-layer perceptron (MLP) takes a different view, where it views each

neuron as one vertex and at each layer, all vertices belong to this layer become active.

To put it simply, SIMD-X distinguishes active vertices from inactive ones, and

focuses on the calculation needed for each vertex. This is different from the vertex-

centric model which deals with not only the active vertex but also its neighbors. Be-

cause two vertices may have different numbers of neighbors, existing systems [145, 112]

81



likely suffer from workload imbalance. To this end, SIMD-X leverages a classifica-

tion technique, similar to [1], to group the active vertices depending on the expected

workload.

Compute defines the computation that happens on each edge. In particular, it

specifies the operations on the metadata of edge (v, u) and two vertices v and u,

which can be written as follows:

updatev→u ← compute(Mv,M(v,u),Mu)

where the return value of updatev→u will be used by the Combine function. For exam-

ple, BP multiplies the edge weight with metadata and SSSP computes the updated

distance for the destination vertex. For MLP, it multiplies the edge weight and meta-

data of input neuron in the push model, while computes the gradient descent [162]

updates for edge weight in the pull model.

Combine merges all the updates, once the computations are completed. It can be

represented:

updateu ← ⊕
v∈Nbr[u]

updatev→u

where ⊕ must be commutative and associative, e.g., sum and minimum, and is being

applied to all the neighbors of vertex u. Figure 3.5 presents the Combine examples

of BP, MLP, and SSSP. Particularly, BP summarizes all updates, where SSSP com-

bines all updates from compute by selecting the minimum. Again, MLP experiences

different cases in push and pull models. In push, it summarizes the value of all input

neurons and conducts a sigmoid compute for the output. In pull, it summarizes the

backward updates and multiplies with the learning rate for the weight update.

SIMD-X optimizes two types of combine operations, i.e., aggregation and voting.

Particularly, aggregation cannot tolerate overwrites, that is, all updates are needed

for computing the results. PageRank, SSSP and k-Core are representative examples

of such operation. In contrast, voting relaxes this condition, that is, the algorithm

is correct as long as one update is received because all updates are identical. BFS,

82



GPU CombineCombine

Co
m

bi
ne

Synchronize 0 3 2 5 1 4

Compute
3

2

4 4

Compute
3

Compute
3

Current active lists
1

0 1 2 3 4 5

Classify

Active vertices

Figure 3.6: System-level view of the ACC model

weakly connected component and strongly connected component algorithms [62] fall

into this category.

3.4.3 Work Flow

Here we present the work flow of SIMD-X, that is, how three ACC functions are

executed on GPUs. On the high level, SIMD-X structures graph computation as a

loop, each iteration of which can be viewed as a sequence of Figure 3.6. Specifically,

SIMD-X utilizes the Active function ¶ to identify the active vertices and classify

them into different groups based on anticipated workload, e.g., three groups of {0, 3},

{2, 7} and {1, 5} in this example. Here, synchronization · is needed to assure that

task generation is completed, which we will discuss in detail in Section 3.6. Next,

SIMD-X maps each group of tasks to GPU cores for Compute ¹. Note, for all tasks

in the same group, SIMD-X treats them like regular applications in Figure 3.2(a). For

different groups, SIMD-X treats them differently, e.g., SIMD-X uses a Combine º

function for the tasks with large workloads that need to merge the results. Section 3.5

will further discuss how task management interacts with ¶ and ¹.

SIMD-X uses the pull-push model as in [71, 70, 1], by controlling where (in/out

edge) Compute happens and how to apply (atomic or atomic free) the Combine re-

sult. Particularly, in the push model, SIMD-X conducts Compute on the out neighbors

of each active vertex, and relies on atomic operations to apply the updates to the des-

tination vertices. In contrast, the pull model schedules Compute on the in neighbors

83



1101 100001

Current active list

Neighbor list b
d
d a c e b f a e b d f g h i e c e e e

0 4 6 1 3 4 6 7 9
a b c d e f g h i

Updated metadata

e e e e e e c c
b d f g h i b fActive edge list

Next active list

Thread bin

0 4 6 1 3 4 6 7 9
a b c d e f g h i

ballotballotballot ballotballot

(a) Batch filter (b) Ballot filter

0 5 6 1 3
a b c d e f g h i

b
d
d a c e b f a e b d f g h i e c e e e

(c) Online filter
e c

b
d
d a c e b f a e b d f g h i e c e e e

c e b d

b f h f g i

b f h g i

b f g h i

b f g h i

c e e

c e

Active vert

Thread 0
Thread 1

Updated vert

Update
vertex status

Batch edges

Adjacent scan,
ballot vote
result to 1 thread

Update 
vertex status

Update 
vertex status

Record updated 
vertex

Record updated 
vertex

Record updated 
vertex

a1

a2

a3

b1

b2

b3

c1

c2

Sorted

Sorted

unsorted

unsorted

Figure 3.7: Three task management methods. Particularly, batch filter and ballot
filter work on Figure 3.1(d) to produce a task list for next iteration. Online filter
does that for Figure 3.1(c).

of active vertices, and uses atomic-free operations to update the destination vertices.

As different iterations favor one model over the other, we follow a similar rule as in

Ligra [71], that is, changing from the push to pull model when working on the push

model works on more than 30% of the edges.

3.5 Just-In-Time Task Management

Task management is essential for graph applications. The key to success is to ensure

good workload balance on GPUs, that is, each GPU core, regardless of from which

streaming processor, accounts for a similar amount of the workload. To this end,

SIMD-X utilizes just-in-time task management to filter inactive vertices and group

comparable tasks together. In the following, we will first present the current approach

of batch filter and analyze its drawbacks, and then describe two new filters, as well

as the selection mechanism.

Batch Filter used in prior projects [75, 74] first loads all the edges of the active

vertices to construct an active edge list, shown as step a1 in Figure 3.7. In the

example of SSSP as shown in Figure 3.1(c) with two threads, the filter loads the

neighbor lists of vertices {e, c} to construct the active list of eight edges. Next, the

filter checks these edges and updates vertex metadata a2 , followed by recording the

statuses of updated vertices a3 which becomes the task list for the next iteration,

84



that is, {b, f , h, g, i}. A local storage per thread – thread bin – is used to avoid the

expensive atomic operations, because multiple threads may concurrently put active

vertices into the next active list. This way, the active vertices is stored in a thread bin

first, and later the batch filter combines all thread bins to formulate the final active

list.

We have observed several drawbacks when using the batch filter in various graph

algorithms. First, the active list can consume up to 2·|E| memory space because

the majority of the vertices in a graph can become active at one iteration [70, 1].

Considering GPU has very limited on-board memory (e.g., 16 GB), this restriction

makes large-scale graph computing prohibitive. Second, batch filter produces an

unsorted list of active vertices, which leads to poor memory performance. Lastly,

this method may need to remove duplicated vertices in the active list because several

threads from different source vertices may update the same destination vertex, e.g.,

vertex f in Figure 3.7(a).

Ballot Filter is designed to overcome all these shortcomings. It first loads the

neighbors of active vertices and immediately updates vertex metadata b1 . As shown

in Figure 3.7(b), the neighbors of {e, c} get updated immediately. Comparing to

the batch filter, this design not only drastically reduces the memory consumption,

but also improves the memory performance through using coalesced scan and sorted

active list.

In the batch filter, the vertex metatdata are updated after all the edges are gath-

ered, in order to reduce TLB (translation lookaside buffer) pressure. Otherwise, the

batch filter would access the neighbor list and metadata arrays simultaneously in a

random fashion [74]. In contrast, the new ballot filter generates a sorted active list

that leads to preferably sequential access of the neighbor list. This is done with ballot

scan to compare the updated and previous metadata b2 .

In the example in Figure 3.7, two threads perform coalesced scan of vertex meta-

data, and with the CUDA ballot() primitive, return a bit variable ‘01’ to the first

thread. Here 1 means active and 0 otherwise, in this case, vertex a is inactive while

b is. Through collaboratively working on the entire metadata array, the first thread

85



Online filter

Ballot filter

Current task list

Next task list

Task-parallel 
management

Thread bin 
overflow Yes

No

Figure 3.8: Just-in-time task management.

eventually gets the bit value ‘0100’ for the first four vertices, while the second thread

‘011110’ for the remaining six vertices. In this end, this approach produces a sorted

active list, that is, {b, f , g, h, i} b3 .

Ballot filter is not without its own issue, especially in the case of a small number

of active vertices. Here scanning the metadata array would account for the majority

of the runtime. For instance, in ER and RC graphs, 99.23% and 96.67% of the time

is spent on scanning metadata in ballot filter alone solution, respectively. As we will

show shortly, it is desirable to improve the performance in this scenario.

Online Filter is designed in a way that it first loads the active neighbors, updates

the destination vertex, and simultaneously records the active vertices in the thread

bin c1 . Afterwards, it assembles all thread bins together as the next active list c2 .

When the number of active vertices is small, this approach is much faster. Here we

use an early stage of SSSP as an example, shown in Figure 3.7(c). In this example,

{b, d} are active vertices, and this approach loads their neighbors for computation,

and immediately records the destination vertices. Eventually, it generates {e, c} as

the active list for the next iteration.

In graph computing, it is possible for a lot of vertices to become active at the same

time, e.g., one BFS thread may work on more than 4,096 vertices for the Twitter

graph. Clearly, one cannot afford such large a thread bin for each thread, thus online

filter inevitably suffers from an overflow problem. The ballot filter largely avoids this

issue because it first updates the metadata of active vertices b2 , which, to some

extent, averages out the active vertices across threads in step b3 . Our evaluation

86



BFS

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

k-Core

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

SSSP

FB
ER
KR
LJ
OR
PK
RD
RC
RM
UK
TW

Iteration

29

21

38
25
20

68

21

34

2,578

555

5,086

675

: Online filter : Ballot filter

Figure 3.9: Ballot filter activation patterns.

also demonstrates such a difference in Figure 3.12. It is also important to note that

for online filter, the vertices in the active list may become redundant, and can be out

of order.

Just-In-Time Control is used in SIMD-X to determine the usage of ballot and

online filter. As shown in Figure 3.8, SIMD-X always activates the online filter first.

Once a thread bin overflows, SIMD-X will turn to the ballot filter to generate the

correct task list for the next iteration. Interestingly, we find out that various algo-

rithms and graph datasets present different selection patterns which tie closely to the

amount of workload, that is, the higher volume of workload often results in the acti-

vation of ballot filter. As shown in Figure 3.9, BFS and SSSP typically use the ballot

filter in the middle of the computation and online filter at the beginning and end.

For high-diameter graphs, BFS and SSSP avoid the use of ballot filter. For instance,

ER and RC always use the online filter along 2,578, 555, 5,086 and 675 iterations.

k-Core activates the ballot filter at the initial iterations, i.e., typically the first two

iterations except RC which only experiences one iteration because all its vertices have

< 16 neighbors. At the extreme, MLP, BP, and PageRank need the ballot filter at

87



Kernel
Push (no fusion) Pull (no fusion) Selective fusion

All fusion
Thread Warp CTA Task mgt Thread Warp CTA Task mgt push pull

Register consumption 26 27 28 24 24 24 22 30 48 50 110

# Kernel launch up to 40,688 3 1

Table 3.2: Register consumption for various kernels.

exactly the first iteration of the computation.

3.6 Push-Pull Based Kernel Fusion

Kernel fusion is a common optimization for GPU applications [144, 1, 74, 75, 143, 161],

which reduces expensive overhead of kernel invocation, as well as minimizes the global

memory traffic as the life time of registers and shared memory is limited in each kernel.

When developing SIMD-X, we first start with an aggressive fusion approach, that

is, creating one large kernel for the entire graph algorithm. However, this fused kernel

requires a large number of the registers, and subsequently, supports fewer parallel

warps which hurts the overall performance. As shown in Table 3.2, the register

consumption (using the compilation flag -Xptxas -v) increases from average 25 to

110, that is 4.4× before and after kernel fusion.

It becomes clear that we need a balanced fusion strategy that keeps both register

consumption and kernel invocation low. To this end, SIMD-X leverages the push-

pull model used in the graph algorithms. That is, such algorithms often use push or

pull based computing in several consecutive iterations. For example, BFS and SSSP

utilize push in the first and last iterations, and pull in between. In contast, k-Core

conducts pull at the beginning while push in the end.

The idea of push-pull based kernel fusion is to fuse kernels around the pull and

push computing. In other words, for the push-based iterations, SIMD-X fuses different

compute kernels (for thread, warp, CTA), as well as task management kernel, into one

push kernel. The kernel only terminates when the computation finishes or it needs to

switch to pull computing according to the criterion discussed in Section 3.4.3. Similar

optimizations are done for the pull-based iterations.

Using the new push-pull based fusion, the register consumption decreases to 48

88



Begin

Push model: JIT task management

(a) All fusion (b) Selective fusion

End

Thread push Warp push

Pull model: JIT task management

CTA push

Thread pull Warp pull CTA pull

Multiple
iterations

Switch model

Multiple
iterations

Begin

Push model: JIT task management

End

Thread push Warp push

Pull model: JIT task management

CTA push

Thread pull Warp pull CTA pull

Multiple
iterations

Switch model

Multiple
iterations

Figure 3.10: Graph computing typically clusters push and model computation sepa-
rately together: (a) all fusion, (b) selective fusion.

and 55 thus increases the configurable thread count by 50%. Together, our evaluations

demonstrate a 25% performance improvement.

Software global barrier is needed to enable the balanced kernel fusion. Generally

speaking, this approach uses an array – lock – to synchronize all GPU threads upon

arrival and departure. During the processing, it assumes the thread CTA as the

monitor while the remaining threads as workers. At arrival, each worker CTA updates

its own status in lock. Once all worker CTAs have arrived, the monitor changes the

statuses of all CTAs to departure, allowing all threads to proceed forward.

This approach, unfortunately, suffers from potential deadlock [160], as illustrated

in Figure 3.11. Specifically, the worker thread CTAs may hold all GPU hardware

resources, such as streaming processors, registers and shared memory, while waiting

for the monitor to update the lock array. In the meantime, the monitor cannot update

the lock array, due to lack of hardware resources (e.g., thread over subscription).

Deadlock-free barrier. SIMD-X utilizes the barrier in a way to ensure that every

CTA, regardless of a work or the monitor, can obtain hardware resources when needed.

This is achieved through comparing the resources needed by the kernels, against the

total available resources. Based on the GPU architecture, we can obtain the total

amount of registers (#registerPerSMX) that can be provided by each streaming

89



R

R

Holding

Worker CTA
…

Hardware resources

Monitor CTA
…

Update 
lock array

Responsible for

R
Waiting

$

$

$

C

C

C

Figure 3.11: Deadlock problem in software global barrier, where ‘C’, ’$’, and ‘R’
represent CUDA core, L1 cache and register, respectively.

processor, e.g., 65,536 registers of NVIDIA K40 GPUs and 32,768 from K20 GPUs.

On the other hand, we can collect the register consumption (#registerPerThread)

of each kernel at the compilation stage. Putting these numbers together, SIMD-X is

able to calculate the appropriate thread configuration for the kernels.

The number of CTA can be computed as follows:

#CTA = floor(
#registersPerSMX

#registersPerThread ·#threadsPerCTA
) ·#SMX (3.1)

where #threadsPerCTA is configured by a user, i.e., 128 by default. For example,

when deploying a kernel, each thread consumes 110 registers, and on K40 that con-

tains 15 SMXs, each of which contains 65,536 registers. If #threadsPerCTA is set

to 128, one gets #CTA = ceil( 65536
110×128

)× 15 = 60. As a result, we can configure this

kernel as CTA and thread count per CTA as 60 and 128, respectively. On NVIDIA

GPUs, CUDA provides a function cudaOccupancyMaxPotentialBlockSize which can

be used to configure kernel threads, similar as equation (3.1).

Table 3.2 presents the register consumption and kernel invocation of different

kernel fusion techniques. By using the push-pull based kernel fusion, the kernel

relaunch is reduced to 3 while its register consumption is cut by half. In Figure 3.13,

we will later show that this technique brings upto 80% performance benefit.

90



3.7 Graph Algorithms

This section presents a variety of algorithms which are implemented on SIMD-X to

examine the expressiveness of ACC programming model, and performance impacts

of the task management and kernel fusion techniques.

BFS [1] traverses a graph level by level. At each level, it loads all neighbors

that are connected to vertices visited in the preceding level, inspects their statuses

(metadata), and subsequently marks those unvisited neighbors as active for the next

iteration. Notably, BFS conducts synchronizations at the end of each level, relies on

vote to combine the updates. During the entire process of traversal, BFS typically

experiences light workload at the beginning and end of the computation while heavy

workload in the middle.

Belief propagation (BP), also known as sum-product message passing algo-

rithm, infers the posterior probability of each event based on the likelihoods and

prior probabilities of all related events. Once modeled as a graph (Bayesian network

or Markov random fields), each event becomes a vertex with all incoming vertices and

edges as related events and corresponding likelihoods. In BP, vertex possibility is the

metadata.

k-Core (KC), which is widely used in graph visualization application [5, 48],

iteratively deletes the vertices whose degree is less than k until all remaining vertices

in this graph possess more than k neighbors. k-Core experiences large volume of

workloads at initial iterations and follows with light workloads. This work uses a

default value of k = 16.

Multi-layer perceptron (MLP) is a popular graphical machine learning algo-

rithm that classifies a dataset into the corresponding categories, e.g., accounting for

61% of Tensorflow usage [163]. In this work, MLP considers the neurons, inter-neuron

connections and connection weights as vertex, edge and weight sets, respectively.

PageRank (PR) [43] updates the rank value of one vertex based on the contri-

bution of all in-neighbors iteratively till all vertices have stable rank values. Because

the contributions of in neighbors are summarized to the destination vertex, we start

91



Graph Name Abbrev. Vertex Count Edge Count

Facebook FB 16,777,215 775,824,943
Europe-osm ER 50,912,018 108,109,319
Kron24 KR 16,777,216 536,870,911
LiveJournal LJ 4,847,571 136,950,781
Orkut OR 3,072,626 234,370,165
Pokec PK 1,632,803 61,245,127
Random RD 4,000,000 511,999,999
RoadCA-net RC 1,971,281 5,533,213
R-MAT RM 3,999,983 511,999,999
UK-2002 UK 18,520,343 596,227,523
Twitter TW 25,165,811 787,169,139

Table 3.3: Graph Dataset

PageRank with the pull model and agg sum as the merge operation. At the end

of PageRank, we switch to the push model because the majority of the vertices are

stable [72]. The switch is decided by a decision tree.

Single source shortest path (SSSP) computes the shortest path between

source vertex and the remaining vertices of the graph. Albeit similar to BFS as

traversal algorithm, SSSP is more challenging mainly for the order of computing

these active vertices is strictly restricted, that is, the vertex with the shortest distance

should be computed first. To improve the parallelism, we adopt the delta-step [60] al-

gorithm which allows us to compute the vertices whose distances are relatively shorter

together.

Storage format. SIMD-X employs compressed sparse row (CSR) format to store

the graph. For undirected graph, we only need to store the out-neighbors of each

vertex. For directed graph, we store both out-neighbors and in-neighbors of each

vertex to support the push and pull based processing.

3.8 Experiments

We have implement SIMD-X1 with 5,660 lines of CUDA and C++ code. All the

algorithms presented in Section 3.7 are implemented with around 100 lines of C++

1SIMD-X will be released in open source upon the paper publication.

92



Alg System FB EU KR LJ OR PK RD RC RM UK TW

BFS

SIMD-X 165 400 130 38 37 39 56 15 57 80 249
Gunrock 685

(4×)
849
(2×)

677
(5×)

71
(2.0×)

225
(6×)

44
(1.1×)

647
(12×)

146
(10×)

506
(9×)

112
(1.4×)

697
(2.8×)

Galois 482
(2.9×)

1068
(2.7×)

140
(1.1×)

139
(3.7×)

42
(1.1×)

44
(1.1×)

48
(0.8×)

53
(3.5×)

65
(1.1×)

217
(2.7×)

322
(1.3×)

PR
SIMD-X 1553 346 350 236 435 118 1105 13 800 637 1525
Gunrock 3004

(1.9×)
884
(2.6×)

3129
(8.9×)

275
(1.2×)

927
(2.1×)

166
(1.4×)

2963
(2.7×)

43
(3.3×)

2208
(2.8×)

784
(1.2×)

3180
(2.1×)

Galois 4552
(2.9×)

603
(1.7×)

3069
(8.8×)

424
(1.8×)

1061
(2.1×)

218
(1.8×)

3576
(3.2×)

20
(1.5×)

2067
(2.6×)

842
(1.3×)

4178
(2.7×)

SSSP
SIMD-X 1703 1080 947 301 534 142 1669 223 485 678 1295
Gunrock OOM 1206

(1.1×)
1220
(1.3×)

431
(1.4×)

1259
(2.4×)

336
(2.4×)

5059
(3×)

229
(1.03×)

OOM OOM OOM

Galois 66
(0.3×)

KC
SIMD-X 366 77 130 59 63 32 230 14 19 151 277
Gunrock 56

(4×)
Galois 66

(4.7×)

Table 3.4: Runtime (ms) of SIMD-X and Gunrock and Galois. A K40 GPU is used to
test SIMD-X and Gunrock, and a CPU with 28 threads for Galois. The blank space
is the test cannot complete for the given algorithm and graph.

code. The source code is compiled by GCC 4.8.5 and NVIDIA nvcc 7.5 with the

optimization flag as O3. In this work, we evaluate SIMD-X on a Linux workstation

with two Intel Xeon E5-2683 CPUs (14 physical cores with 28 hyperthreads), and

512GB main memory. Throughout the evaluation, we use uint32 as the vertex ID

and uint64 as index and evaluate our system on NVIDIA K40 GPUs unless otherwise

is specified. We also test SIMD-X on earlier K20 and latest P100 GPUs. The timing is

started once the graph data is loaded in GPU global memory. Each result is reported

with an average of 64 runs.

3.8.1 Graph Benchmarks

We evaluate on a wide range of graphs as shown in Table 3.3, which falls into four

types, i.e., social networks, road maps, hyperlink web and synthetic graphs. Partic-

ularly, Facebook [164], LiveJournal [137], Orkut [137], Pokec [137], and Twitter [7]

are common social networks. Europe-osm [165] and RoadCA-net [136] are two large

roadmap graphs, and UK-2002 [136] is a web graph. Furthermore, we use Graph500

generator to generate Kron24 [69], and GTgraph [138] for R-MAT and random graphs.

Europe-osm and RoadCA-net are high diameter graphs, with 2570 and 555 as their

93



 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

132 132 2.4 29 29 2.6

S
p
e
e
d
u
p

Ballot
Online
JIT

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.8 2.3 2.7 8 8 14 14 4 2.1

S
p
e
e
d
u
p

Ballot
Online
JIT

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

30 30 2.6 2.6

S
p
e
e
d
u
p

Ballot
Online
JIT

(a) BFS (b) k-Core (c) SSSP

Figure 3.12: Benefit of just-in-time task management, normalized to the performance
of the ballot filter.

diameters, respectively. LiveJournal, Pokec, Twitter and UK-2002 are medium diam-

eter graphs, i.e., 10 - 30 as their diameters. The diameters of the remaining graphs

are all smaller than 10. For graphs without edge weight, we use a random generator

to generate one weight for each edge similar to Gunrock [75].

3.8.2 Comparison with State-of-the-art

Table 4.13 summarizes the runtime of SIMD-X against Galois and Gunrock which

are state-of-the-art CPU and GPU graph processing systems. In general, SIMD-X

outperforms Gunrock and Galois on K40 GPUs by 4× and 3.2×, respectively. In BFS,

SIMD-X bests Gunrock and Galois by 5× and 2×. The best and worst speedups over

Gunrock are achieved on the RD and PK graphs of 11.6× and 1.1×, while for Galois,

the LJ and RD graphs of 3.7× and 0.85×. SIMD-X is slower than Galois on the RD

graph, because task management brings no benefit to a uniform graph. On the other

hand, Gunrock performs worse on this graph due to the larger overhead of the batch

filter.

In PageRank, SIMD-X achieves over 2.5× speedups compared to both Gunrock

and Galois. For SSSP and k-Core, we have observed Gunrock and Galois either run

out of memory (OOM), or stuck in the execution. SIMD-X achieves 1.7× speedup

over Gunrock in SSSP while Galois because of low cost of atomic operation runs much

faster than K40 based SSSP but is slower than P100 GPUs which only consumes 50

ms as we will discuss shortly. For k-Core,SIMD-X is 4× and 4.7× faster than Gunrock

and Galois, respectively on RoadCA-net graph.

94



 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.2 2.4 3.43.4 2.8

S
p
e
e
d
u
p

Non-fusion
All-fusion
Push-pull fusion

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

S
p
e
e
d
u
p

Non-fusion
All-fusion
Push-pull fusion

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.7 2.9 2.7 2.2

S
p
e
e
d
u
p

Non-fusion
All-fusion
Push-pull fusion

(a) BFS (b) BP (c) k-Core

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

S
p
e
e
d
u
p

Non-fusion
All-fusion
Push-pull fusion

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

S
p
e
e
d
u
p

Non-fusion
All-fusion
Push-pull fusion

 0

 0.5

 1

 1.5

 2

FB ER KR LJ OR PK RD RC RM UK TW

2.9 3.7 29 29

S
p
e
e
d
u
p

Non-fusion
All-fusion
Push-pull fusion

(d) MLP (e) PageRank (f) SSSP

Figure 3.13: Benefit of push-pull based kernel fusion, normalized to the performance
of no fusion.

3.8.3 Benefits of Various Techniques

This section studies the performance impacts brought by JIT task management and

push-pull based kernel fusion. As we have presented in Section 3.5, JIT task manage-

ment only works for applications that experience workload variations, that is, BFS,

k-Core and SSSP. On the other hand, push-pull based kernel fusion is applicable for

all six algorithms

On average, JIT task management presented in Figure 3.12, is 16×, 26× and 4.5×

faster than the ballot filter for BFS, k-Core and SSSP. As expected, online filter alone

cannot work for many graphs, particularly large ones, e.g., Facebook, Twitter and

UK2002 graphs in BFS and SSSP. Without considering overflow problem (ER and

RC graphs), JIT task management adds a small 1-2% overhead on top of the online

filter on BFS and SSSP.

On k-Core, JIT task management is, on average, 28.5× and 5% faster than ballot

and online filter, respectively. We also observe that the ballot filter outperforms the

online filter on ER and RC graphs by 3.4× and 1.7×, because k-Core removes a large

volume of vertices which favors the former to produce a non-redundant and sorted

active list.

Push-pull based kernel fusion brings average 43% and 25% improvement over non-

fusion and all-fusion across all algorithms and graphs. In particular, push-pull based

kernel fusion tops non-fusion by 74%, 11%, 85%, 8%, 10% and 66% on BFS, BP, k-

95



 0

 2

 4

 6

 8

FB ER KR LJ OR PK RD RC RM UK TW

S
p
e
e
d
u
p

K20
K40

P100

 0

 2

 4

 6

 8

FB ER KR LJ OR PK RD RC RM UK TW

2.4

S
p
e
e
d
u
p

K20
K40
P100

 0

 2

 4

 6

 8

FB ER KR LJ OR PK RD RC RM UK TW

S
p
e
e
d
u
p

K20
K40
P100

(a) BFS (b) BP (c) k-Core

 0

 2

 4

 6

 8

FB ER KR LJ OR PK RD RC RM UK TW

8.5 8.1 8.6

S
p
e
e
d
u
p

K20
K40
P100

 0

 2

 4

 6

 8

FB ER KR LJ OR PK RD RC RM UK TW

8.1

S
p
e
e
d
u
p

K20
K40
P100

 0

 2

 4

 6

 8

FB ER KR LJ OR PK RD RC RM UK TW

8.2 11.6

S
p
e
e
d
u
p

K20
K40
P100

(d) MLP (e) PageRank (f) SSSP

Figure 3.14: SIMD-X performance differences on K20, K40 and P100 GPUs normal-
ized to K20 performance.

Core, MLP, PageRank and SSSP. BFS, k-Core and SSSP achieves more performance

gains because they are not computation intensive and tend to run a higher number of

iterations. For all fusion, our new kernel fusion is 55%, 6%, 62%, 12%, 25% and 11%

faster on BFS, BP, k-Core, MLP, PageRank and SSSP. It is important to note that all

fusion is not always beneficial, i.e., all fuse option of MLP and PageRank is average

4% and 13% slower than no fusion, respectively. However, for high computation

iterations, like BFS and SSSP on ER and RC, all fusion is on average 2× better.

3.8.4 Comparison of GPUs

We also evaluate SIMD-X on different types of GPUs, i.e., K20, K40 and P100 . Note

that P100 [166] provides 3× computing power and 2× memory bandwidth than K40

GPUs. Interestingly, SIMD-X runs about 3.7× faster on P100 over K40. This indi-

cates that our JIT task management and kernel fusion can leverage both hardware

improvements on memory bandwidth and computing capability for faster graph com-

puting. In comparison, Gunrock benefits only from bandwidth increase, achieving

around 2.7× speedup from K40 to P100 [167].

Overall, six algorithms perform similarly on different GPUs. On average, K40

and P100 are 1.7× and 5.8× faster than K20 GPUs. Particularly, K40 is 1.6×, 1.6×,

1.8×, 1.7×, 1.5× and 1.7× better than K20 on BFS, BP, k-Core, PageRank, MLP

and SSSP, respectively. For P100, it outperforms K20 by 4.1×, 6×, 5.5×, 6.5×,

96



6.1×, and 6.9× on BFS, BP, k-Core, PageRank, MLP and SSSP, respectively. It is

important to note that SIMD-X on P100 GPUs is 18× and 17× better compared to

the aforementioned results on Gunrock and Galois.

97



Chapter 4

Graphene: Fine-Grained IO

Management for Graph Computing

4.1 Introduction

Graphs are powerful data structures that have been used broadly to represent the

relationships among various entities (e.g., people, computers, and neurons). Analyz-

ing massive graph data and extracting valuable information is of paramount value in

social, biological, healthcare, information and cyber-physical systems [168, 169, 170,

171, 172, 173, 174].

Generally speaking, graph algorithms include reading the graph data that consists

of a list of neighbors or edges, performing calculations on vertices and edges, and up-

dating the graph (algorithmic) metadata that represents the states of vertices and/or

edges during graph processing. For example, breadth-first search (BFS) needs to ac-

cess the adjacency lists (data) of the vertices that have just been visited at the prior

level, and mark the statuses (metadata) of previously unvisited neighbors as visited.

Accesses of graph data and metadata come hand-in-hand in many algorithms, that

is, reading one vertex or edge will be accompanied with access to the corresponding

metadata. It is important to note that in this paper we use the term metadata to

refer to the key data structures in graph computing (e.g., the statuses in BFS and

the ranks in PageRank).

98



Graph										Algorithms

…

CPU …CPU CPU

Bitmap	based	AIO

IO	Iterator	API

Thread	and	Memory	Management

Row-Column	Balanced	Partition

Graphene

Graphene	Data	Structures

Bitmap,	IO	Buffer,	Metadata	

DRAM

Graph	Data SSD SSD SSD

Figure 4.1: Architecture overview.

To tackle the IO challenge in graph analytics, prior research utilizes in-memory

processing that stores the whole graph data and metadata in DRAM to shorten the

latency of random accesses [146, 112, 6, 71, 151]. In-memory processing brings a

number of benefits including easy programming and high-performance IOs. However,

this approach is costly and difficult to scale, as big graphs continue to grow drastically

in size. On the other hand, the alternative approach of external memory graph

processing focuses on accelerating data access on storage devices. However, this

approach suffers not only from complexity in programming and IO management but

also slow IO and overall system performance [6, 76].

To close the gap between in-memory and external memory graph processing, we

design and develop Graphene, a new semi-external memory processing system that

efficiently reads the graph data on SSDs while managing the metadata in DRAM.

Simply put, Graphene incorporates graph data awareness in IO management behind

an IO centric programming model, and performs fine-grained IOs on flash-based stor-

age devices. This is different from current practice of issuing large IOs and relying

on operating system (OS) for optimization [6, 71, 76]. Figure 4.1 presents the system

architecture. The main contributions of Graphene are four-fold:

IO (request) centric graph processing. Graphene advocates a new paradigm

where each step of graph processing works on the data returned from an IO re-

quest. This approach is unique from four types of existing graph processing systems:

(1) vertex-centric programming model, e.g., Pregel [145], GraphLab [146], Power-

Graph [112], and Ligra [71]; (2) edge-centric, e.g., X-stream [151] and Chaos [153];

(3) embedding-centric, e.g., Arabesque [175]; and (4) domain-specific language, e.g.,

99



Galois [6], Green-Marl [152] and Trinity [150]. All these models are designed to ad-

dress the complexity of the computation, including multi-threaded processing [6, 152],

workload balancing [112, 176], inter-thread (node) communication [177] and synchro-

nization [145]. However, in order to achieve good IO performance, these models

require a user to explicitly manage the IOs, which is a challenging job by itself.

For example, FlashGraph needs user input to sort, merge, submit and poll IO re-

quests [76].

In Graphene, IO request centric processing (or IO centric for short) aims to sim-

plify not only graph programming but also the task of IO management. To this end,

we design a new IoIterator API that consists of a number of system and user-defined

functions. As a result, various graph algorithms can be written in about 200 lines of

code. Behind the scenes, Graphene translates high-level data accesses to fine-grained

IO requests for better optimization. In short, IO centric processing is able to retain

the benefit of easy programming while delivering high-performance IO.

Bitmap based, asynchronous IO. Prior research aims to read a large amount of

graph data as quickly as possible, even when only a portion of it is needed. This

design is justified because small random accesses in graph algorithms are not the

strong suit of rotational hard drives. Notable examples include GraphChi [147] and

X-stream [151], which read the entire graph data sequentially from the beginning

to the end during each iteration of the graph calculation. In this case, the pursuit

of high IO bandwidth overshadows the usefulness of data accesses. Besides this full

IO model, the IO on-demand approach loads only the required data in memory, but

again requires significant programming effort [149, 76, 178].

With the help of IO centric processing, Graphene pushes the envelope of the

IO on-demand approach. Specifically, Graphene views graph data files as an array

of 512-byte blocks, a finer granularity than more commonly used 4KB, and uses

a Bitmap-based approach to quickly reorder, deduplicate, and merge the requests.

While it incurs 3.4% overhead, the Bitmap approach improves the IO utility by as

much as 50%, and as a result runs more than four times faster than a typical list

based IO. In this work, IO utility is defined as the ratio between the amount of data

100



Type Name Return value Description

System Iterator->Next() io block t Get the next in-memory data block

Iterator->HasMore() bool Check if there are more vertices available from IO

Iterator->Current() vertex Get the next available vertex v

Iterator->GetNeighbors(vertex v) vertex array Get the neighbors for the vertex v

User IsActive(vertex v) bool Check if the vertex v is active

Compute(vertex v) Perform algorithm specific computation

Table 4.1: IoIterator API

that is loaded and useful for graph computation, and that of all the data loaded from

disk. Furthermore, Graphene exploits Asynchronous IO (AIO) to submit as many

IO requests as possible to saturate the IO bandwidth of flash devices.

Direct hugepage support. Instead of using 4KB memory pages, Graphene lever-

ages the support of Direct HugePage (DHP), which preallocates the (2MB and 1GB)

hugepages at boot time and uses them for both graph data and metadata structures,

e.g., IO buffer and Bitmap. For example, Graphene designs a hugepage based mem-

ory buffer which enables multiple IO requests to share one hugepage. This technique

eliminates the runtime uncertainty and high overhead in the transparent hugepage

(THP) method [179], and significantly lowers the TLB miss ratio by 177×, leading

to, on average, 12% performance improvement across different algorithms and graph

datasets.

Balanced data and workload partition. Compared to existing 2D partitioning

methods which divide vertices into equal ranges, Graphene introduces a row-column

balanced 2D partitioning where each partition contains an equal number of edges.

This ensures that each SSD holds a balanced data partition, especially in the cases

of highly skewed degree distribution in real-world graphs. However, a balanced data

partition does not guarantee that the workload from graph processing is balanced.

In fact, the computation performed on each partition can vary drastically depending

on the specific algorithm. To address this problem, Graphene utilizes dedicated IO

and computing threads per SSD and applies a work stealing technique to mitigate

the imbalance within the system.

We have implemented Graphene with different graph algorithms and evaluated its

performance on a number of real world and synthetic graphs on up to 16 SSDs. Our

experiments show that Graphene outperforms several external memory graph systems

101



by 4.3 to 20×. Furthermore, Graphene is able to achieve similar performance to in-

memory processing with the exception of BFS.

This chapter is organized as follows: Section 4.2 discusses the related work. Sec-

tion 4.3 presents the IO centric programming model. Section 4.4 discusses bitmap-

based, asynchronous IO and Section 4.5 presents data and workload balancing tech-

niques, and Section 4.6 describes hugepage support. Section 4.7 describes a number

of graph algorithms used in this work. Section 4.8 presents the experimental setup

and results.

4.2 Related Work

Recent years have seen incredible advances in graph computation, to name a few,

in-memory systems [6, 152, 71], distributed systems [150, 112, 176, 177, 180, 72],

external-memory processing [147, 151, 153, 76, 181, 145, 146, 154, 149, 182, 148, 183],

and accelerator-based systems [143, 4, 1]. In this section, we compare Graphene with

existing projects from three aspects: programming, IO, and partitioning.

Programming. Prior projects, regardless of Think like a vertex [145, 176, 4, 147],

Think like an edge [151, 153, 182], Think like an embedding [175], or Think like a

graph [159], center around simplifying computation related programming efforts. In

comparison, Graphene aims for ease of IO management with the new IO iterator API.

IO optimization is the main challenge for external memory graph engines, for

which Graphene develops a set of fine-grained IO management techniques, including

using 512-byte IO block and bitmap-based selective IO. Our approach achieves high

efficiency compared to full IO [151, 153, 147, 145]. Compared to GridGraph [148] and

FlashGraph [76], Graphene introduces a finer grained method that supports global

range IO adjustment and reduces IO requests by 3×. Also, Graphene shows that

asynchronous IOs, when carefully managed, are very beneficial for external memory

systems. While hugepages are not new to graph systems [6, 76], Graphene addresses

the issue of potentially low memory utilization by constructing IO buffers to share

hugepages.

102



while true do
foreach vertex v do

if IsActive(v) then
handle = IO Submit(v);
IO Poll(handle);
Compute(the neighbors of v);

end
end
level++;

end
Algorithm 1: BFS with user-managed IO.

while true do
block = IoIterator→Next();
while block→HasMore() do

vertex v = block→Current();
if IsActive(v) then

Compute(block→GetNeighbors(v));
end

end
level++;

end
Algorithm 2: IoIterator-based BFS.

Partition optimization. A variety of existing projects [112, 184, 148, 76] rely on

conventional 2D partitioning [185] to balance the workload. In contrast, Graphene

advocates that it is the amount of edges, rather than vertices, in a partition that

determines the workload. The new row-column balanced partition can help achieve

up to 2.7× speedup on a number of graph algorithms.

4.3 IO Request Centric Graph Processing

Graphene allows the system to focus on the data, be it a vertex, edge or subgraph,

returned from an IO request at a time. This new IO (request) centric processing

aims to provide the illusion that all graph data resides in memory, and delivers high

IO performance through applying various techniques behind the scenes which will be

described in next three sections.

To this end, Graphene develops an IoIterator framework, where a user only needs

to call a simple Next() function to retrieve the needed graph data for processing.

This allows the programmers to focus on graph algorithms without worrying about

the IO complexity in semi-external graph processing. At the same time, by taking

care of graph IOs, the IoIterator framework allows Graphene to perform disk IOs

more efficiently in the background and make them more cache friendly. It is worth

noting that the IO centric model can be easily integrated with other graph processing

paradigms including vertex or edge centric processing. For example, Graphene has a

user-defined Compute function that works on vertices.

At a high level shown in Figure 4.2, we insert a new IoIterator layer between the

algorithm and physical IO. In this architecture, the processing layer is responsible

for the control flow, e.g., computing what vertices of the graph should be active, and

103



IoIteratorGraph
Processing

IO		Requests

Graph	Data
Physical

IO

Active	Vertices

GetNeighbors()

Figure 4.2: IoIterator programming model.

working on the neighbors of those active vertices. The IO layer is responsible for

serving the IO requests from storage devices. Graph processing can start as soon as

the IOs for the adjacency lists of the active vertices are complete, i.e., when the data

for the neighbors become available. The new abstraction of IoIterator is responsible

for translating the requests for the adjacency lists into the IO requests for data blocks.

Internally, Graphene applied a number of IO optimizations behind the IoIterator,

including utilizing a Bitmap per device for sorting and merging, submitting large

amounts of non-blocking requests via asynchronous IO, using hugepages to store

graph data and metadata, and resolving the mismatch between IO and processing

across devices.

The IoIterator layer consists of a set of APIs listed in Table 4.1. There are four

system-defined functions for the IoIterator, Next, HasMore, Current, and GetNeigh-

bors, which work on the list of the vertices returned from the underlying IO layer.

In addition, two functions IsActive and Compute should be defined by the users.

For example, in BFS, the IsActive function should return true for any frontier if a

vertex v has been visited in the preceding iteration, and Compute should check the

status of each neighbor of v, and mark any unvisited neighbors as frontiers for the

next iteration. Detailed description of BFS and other algorithms can be found in

Section 4.7.

An example of BFS pseudocode written with the current approach of user-managed

selective IO vs. the IoIterator API can be found in Algorithms 1 and 2. In the first

approach, the users are required to be familiar with the Linux IO stack and explic-

itly manage the IO requests such as IO submission, polling, and exception handling.

The main advantage of the IoIterator is that it completely removes such a need. On

the other hand, in both approaches, the users need to provide two similar functions,

IsActive and Compute.

104



It is important to note that the pseudocode will largely stay the same for other

algorithms, but with different IsActive and Compute. For example, in PageRank,

IsActive returns true for vertices that have delta updates, and Compute accumulates

the updates from different source vertices to the same destination vertex. Here,

Compute may be written in vertex or edge centric model.

4.4 Bitmap Based, Asynchronous IO

Graphene achieves high-performance IO for graph processing through a combination

of techniques including fine-grained IO blocks, bitmap, and asynchronous IO. Specif-

ically, Graphene favors small, 512-byte IO blocks to minimize the alignment cost and

improve the IO utility, and utilizes a fast bitmap-based method to reorder and pro-

duce larger IO requests, which will be submitted to devices asynchronously. As a

result, the performance of graph processing improves as a higher fraction of useful

data are delivered to CPUs at high speed.

In Graphene, graph data are stored on SSDs in Compressed Sparse Row (CSR)

format which consists of two data structures: the adjacency list array that stores

the IDs of the destination vertices of all the edges ordered by the IDs of the source

vertices, and the beginning position array that maintains the index of the first edge

for each vertex.

4.4.1 Block Size

One trend in modern operating systems is to issue IOs in larger sizes, e.g., 4KB

by default in some Linux distributions [186, 187, 188, 189, 190, 191, 192]. While

this approach is used to achieve high sequential bandwidth from underlying storage

devices like hard drives, doing so as in prior work [76] would lead to low IO utility

because graph algorithms inherently issue small data requests. In this work, we

have studied the IO request size when running graph algorithms on Twitter [11] and

Friendster [193]. Various graph datasets that are used in this paper is summarized in

Section 4.8. One can see that most (99%) of IO requests are much smaller than 4KB

105



 0

 20

 40

 60

 80

 100

 1500  3000  4500  6000  7500  9000

512B 4KBC
D

F

Adjacency list size (Bytes)

Twitter
Friendster

Figure 4.3: Distribution of IO sizes.

Adjacency	list

4KB

Page	0: Page	2:

Page	1:

HugePage enabled	I/O	buffer:

Adjacency	list

(a)	4KB	block	size

(b)	512-byte	block	size

Figure 4.4: IO alignment cost: 4KB vs. 512-byte blocks, where one dotted box
represents one 512-byte block.

as shown in Figure 4.3. Thus, issuing 4KB IOs would waste a significant amount of

IO bandwidth.

In Graphene, we choose to use a small IO size of 512 bytes as the basic block

for graph data IOs. Fortunately, new SSDs are capable of delivering good IOPS for

512-byte read requests for both random and sequential IOs. For example, Samsung

850 SSD [194], which we use in the experiments, can achieve more than 20,000 IOPS

for 512-byte random read.

Another benefit of using 512-byte blocks is to lower the cost of the alignment

for multiple requests. Larger block size like 4KB means the offset and size of each

IO request should be a multiple of 4KB. In the example presented in Figure 4.4,

requesting the same amount of data will lead to the different numbers of IOs when

using 4KB (top) and 512-byte (bottom) block sizes. One can see that the former will

load 2.2× more data, i.e., 12KB vs. 5KB in this case. In addition, combined with

hugepage support that will be presented shortly, 512-byte block IO will need only one

hugepage-based IO buffer, compared to three 4KB pages required in the top case.

106



Bitmap
Merge

Active	Vertices
IO	Requests

Pluglist

(b)	Bitmap

Adjacency	List

Gap

V7V1 V3V5 V8

0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 10

0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 10

V7V1 V3V5 V8

b7 b15	 b16 b13 b14 b15b1 b2 b5

b1 b2 b7 b15 b16 b5						 b13 b14 b15

(a)	Pluglist

Figure 4.5: Pluglist vs. bitmap IO management, (a) Pluglist where sorting and
merging are limited to IO requests in the pluglist. (b) Bitmap where sorting and
merging are applied to all IO requests.

4.4.2 Bitmap-Based IO Management

At each iteration of graph processing, graph algorithms compute and generate the

requests for the adjacency lists (i.e., the neighboring vertices) of all active vertices

for the following iteration. In particular, Graphene translates such requests into a

number of 512-byte aligned IO blocks, which are quickly identified in a new Bitmap

data structure. In other words, Graphene maintains a Bitmap per SSD, one bit for

each 512-byte block on the disk. For each request, Graphene marks the bits for the

corresponding blocks, that is, should a block need to be loaded, its bit is marked as

“1”, and “0” otherwise. Clearly, the Bitmap offers a global view of IO operations and

enables optimization opportunities which would not otherwise be possible.

For a 500GB SSD as we have used in this work, the size of the bitmap is merely

around 128MB, which we can easily cache in CPUs and store in DRAM with a

number of hugegages. Because Graphene combines Bitmap-based management with

asynchronous IO, it is also able to utilize one IO thread per SSD. Therefore, since

there is only one thread managing the Bitmap for each SSD, no lock is required on

the Bitmap structures.

Issues with local IO optimization. Traditionally, the OS takes a local view of

the IO requests by immediately issuing the requests for the neighbors of one or a

group of active vertices. In addition, the OS performs several important tasks such

as IO batching, reordering and merging at the block layer. Unfortunately, these

techniques have been applied only to IO requests that have been buffered in certain

data structures. For instance, Linux exploits a linked list called pluglist to batch

107



and submit the IO requests [186], in particular, the most recent Linux kernel 4.4.0

supports 16 requests in a batch.

Figure 4.5(a) presents the limitations of the pluglist based approach. In this

example, vertices {v5, v8, v1, v7, v3} are all active and the algorithm needs to load their

neighbors from the adjacency list file. With a fixed-size pluglist, some of the requests

will be batched and enqueued first, e.g., the requests for the first three vertices {v5,

v8, v1}. In the second step, sorting is applied across the IO requests in the pluglist.

Since the requests are already grouped, sorting happens within the boundary of each

group. In this case, the requests for the first three vertices are reordered from {b7,

b15, b16, b1, b2} to {b1, b2, b7, b15, b16}. In the third step, if some IO blocks present

good spatial locality, merging will be applied to form a larger IO request, e.g., blocks

{b1, b2, b7} are merged into one IO transaction. And later, a similar process happens

for the IOs on the rest of vertices {v7, v3}.

In this case, there are four independent IO requests to the disk, (a) blocks b1 - b7,

(b) blocks b15 - b16, (c) block b5, and (d) blocks b13 - b15. The first request loads seven

sequential blocks in one batch, which takes advantage of prefetching and caching and

is preferred by the disks and OS. As a result, the third request for block b5 will likely

hit in the cache. On the other hand, although the second and fourth requests have

overlapping blocks, they will be handled as two separate IO requests.

Bitmap and global IO optimization. Graphene chooses to carry out IO man-

agement optimizations, including IO deduplication, sorting and merging, on a global

scale. This is motivated by the observation that although graph algorithms tend to

present little or no locality in a short time period, there still exists a good amount of

locality within the entire processing window. Bitmap-based IO management is shown

in Figure 4.5(b). Upon receiving the requests for all active vertices, Graphene will

convert the needed adjacency lists into the block addresses and mark those blocks in

the Bitmap.

Sorting. The process of marking active blocks in the corresponding locations in the

Bitmap naturally sorts the requests in the order of physical addresses on disks. In

other words, the order of the requests is simply that of the marked bits in the Bitmap.

108



IO deduplication is also easily achieved in the process. Bitmap-based IO ensures

that only one IO request will be sent even when the data block is requested multiple

times, achieving the effect of IO deduplication. This is common in graph computation.

For example, in the single source shortest path algorithm, one vertex may have many

neighboring vertices, and if more than one neighbors need to update the distance

of this vertex, it will need to be enqueued multiple times for the next iteration. In

addition, different parts of the same IO block may need to be loaded at the same

time. In the prior example, as the block b15 is shared by the requests from vertices v7

and v8, it will be marked and loaded once. Our study shows that the deduplication

enabled from Bitmap can save up to 3× IO requests for BFS, compared to a pluglist

based method.

IO merging. Bitmap is very easy to use for merging the requests in the vicinity

of each other into a larger request, which reduces the total number of IO requests

submitted to disks. For example, as shown in Figure 4.5(b), IO requests for vertices

v1, v3, v5 (and similarly for vertices v7 and v8) are merged into one. As a result, there

are only two non-overlapping requests instead of four as in the pluglist case.

How to merge IO requests is guided by a number of rules. It is straightforward

that consecutive requests should be merged. When there are multiple non-consecutive

requests, we can merge them when the blocks to be loaded are within a pre-defined

maximum gap, which determines the largest distance between two requests. Note

that this rule directly evaluates the Bitmap by bytes to determine whether eight

consecutive blocks are needed to be merged.

This approach favors larger IO sizes and has proven to be effective in achieving

high IO performance. Figure 4.6 shows the performance when running BFS on the

Twitter and UK graphs. Interestingly, the performance peaks for both graphs when

the maximum gap is set to 16 blocks (i.e., 8KB). Graphene also imposes an upper

bound for IO size, so that the benefit of IO merging would not be dwarfed by handling

of large IO requests. We will discuss this upper bound shortly.

In conclusion, Bitmap provides a very efficient method to manage IO requests

for graph processing. We will show later that while the OS already provides similar

109



 50
 60
 70
 80
 90

 100

 0  2  4  6  8  10  12  14  16

Re
la

tiv
e 

Pe
rf.

 (%
)

Max gap (KB)

Twitter
UK

Figure 4.6: Graphene BFS Performance of maximum gap.

functionality, this approach is more beneficial for dealing with random IOs to a large

amount of data. Besides Bitmap-based IO, we have also implemented a Pluglist based

approach that extends the pluglist to support sorting, deduplication and merging in a

global scale. As shown in Section 4.8, compared to a list, the Bitmap approach incurs

smaller overhead and runs four times faster. It is important to note that although

we focus on using Bitmap for graph processing in this work, it can also be applied to

other applications. We will demonstrate this potential in Section 4.8.

4.4.3 Asynchronous IO

Asynchronous IO (AIO) is often used to enable a user-mode thread to read or write a

file, while simultaneously carrying out the computation [186]. The initial design goal

is to overlap the computation with non-blocking IO calls. However, because graph

processing is IO bound, Graphene exploits AIO for a different goal of submitting as

many IO requests as possible to saturate the IO bandwidth of flash devices.

There are two popular AIO implementations, i.e., user-level POSIX AIO and

kernel-level Linux AIO. We prefer the latter in this work, because POSIX AIO forks

child threads to submit and wait for the IO completion, which in turn has scalability

issues while submitting too many IO requests [186]. In addition, Graphene lever-

ages direct IO to avoid the OS-level page cache during AIO, and the possible blocks

introduced by the kernel [195].

Upper bound for IO request. Although disks favor large IO sizes in tens or

hundreds of MBs, it is not always advantageous to do so, especially for AIO. Typically,

an AIO consists of two steps, submitting the IO request to an IO context and polling

the context for completion. If IO request sizes are too big, the time for IO submission

110



100

102

104

106
107

20 25 210 215 220 225 230
Ti

m
e 

(lo
gs

ca
le

, µ
s)

IO size (logscale, byte)

submit
poll

 150

 250

 350

 450

 550

 1  32  1024

Th
ro

ug
hp

ut
 (M

B/
s)

#IO context (logscale)

Sequential 
Random

(a) IO size (b) IO context

Figure 4.7: AIO performance w.r.t. IO size and IO context

would take longer than polling, at which point AIO would essentially become blocking

IO. Figure 4.7(a) studies the AIO submission and polling time. As the size goes

beyond 1MB, submission time increases quickly. And once it reaches 128MB, it

becomes blocked IO as submission time eventually becomes longer then polling time.

In this work, we find that a modest IO size, such as 8, 16, and 32 KB, is able to

deliver good performance for various graph algorithms. Therefore, we set the default

upper bound of IO merging as 16KB.

IO context. In AIO, each IO context loads the IO requests sequentially. Graphene

uses multiple contexts to handle the concurrent requests and overlap the IO with the

computation. For example, while a thread is working on the request returned from

one IO context, another IO context can be used to serve other requests from the

same SSD. Given its intensive IO demand, graph computation would normally need

to create a large number of IO contexts. However, without any constraints, too many

IO contexts would hurt the performance because every context needs to register in

the kernel and may lead to excessive overhead from polling and management.

Figure 4.7(b) evaluates the disk throughput with respect to the number of total

IO contexts. As one can see that each SSD could achieve the peak performance

with 16 contexts but the performance drops once the total IO context goes beyond

1,024 contexts. In this work, depending on the number of available SSDs, we utilize

different numbers of IO contexts, by default using 512 contexts for 16 SSDs.

111



R1

R2
R3
R4

(a)	Conventional	2D (b)	Row	Balanced	1D (c)	Row-column	Balanced	2D

P

P

R1

R2
R3
R4

C1 C2 C3 C4

P

P
P

P P P

Figure 4.8: Graphene Balanced 2D partition.

4.4.4 Conclusion

In summary, combining 512-byte block and Bitmap-based IO management allows

Graphene to load a smaller amount of data from SSDs, about 21% less than the tradi-

tional approach. Together with AIO, Graphene is able to achieve high IO throughput

of upto 5GB/s for different algorithms on an array of SSDs.

4.5 Balancing Data and Workload

Taking care of graph data IO only solves half of the problem. In this section, we

present data partitioning and workload balancing in Graphene.

4.5.1 Row-Column Balanced 2D Partition

Given highly skewed degree distribution in power-law graphs, existing graph systems,

such as GridGraph [148], TurboGraph [149], FlashGraph [76], and PowerGraph [112],

typically apply a simple 2D partitioning method [185] to split the neighbors of each

vertex across multiple partitions. The method is presented in Figure 4.8(a), where

each partition accounts for an equal range of vertices, P number of vertices in this

case, on both row and column-wise. This approach needs to scan the graph data

once to generate the partitions. The main drawback of this approach is that an equal

range of vertices in each data partition do not necessarily lead to an equal amount of

edges, which can result in workload imbalance for many systems.

To this end, Graphene introduces a row-column balanced 2D partitioning method,

112



 0
 1
 2
 3
 4
 5
 6

APSP BFS k-Core PR SpMV WCC

Sp
ee

du
p

Twitter
Friendster

Figure 4.9: Benefit of row-column balanced 2D partition.

as shown in Figure 4.8(b-c), which ensures each partition contains an equal number of

edges. In this case, each partition may have different numbers of rows and columns.

This is achieved through three steps: (1) the graph is divided by the row major

into R number of partitions, each of which has the same numbers of edges with

potentially different number of rows; (2) Each row-wise partition is further divided

by the column major into C number of (smaller) partitions, each of which again

has the equal amount of edges. As a result, each partition may contain different

number of rows and columns. Although it needs to read the graph one more time,

it produces “perfect” partitions with the equal amount of graph data, which can be

easily distributed to a number of SSDs.

Figure 4.9 presents the benefits of row-column balanced 2D partition for two social

graphs, Twitter and Friendster. On average, the improvements are 2.7× and 50%

on Twitter and Friendster, respectively. The maximum and minimum benefits for

Twitter are achieved on SpMV for 5× and k-Core 12%. The speedups are similar for

Friendster. While each SSD holds a balanced data partition, the workload from graph

processing is not guaranteed to be balanced. Rather, the computation performed

on each partition can vary drastically depending on the specific algorithm. In the

following, we present the workflow of Graphene and how it balances the IO and

processing.

4.5.2 Balancing IO and Processing

Although AIO, to some extent, enables the overlapping between IO and computation,

we have observed that a single thread doing both tasks would fail to fully saturate

the bandwidth of an SSD. To address this problem, one can assign multiple threads

113



…
Metadata

IO	Buffer
Ring

SSDs

Bitmap BitmapBitmap

Computing
Thread

Metadata Metadata

… IO	Thread

CPU

IO	ThreadIO	Thread

Computing
Thread

Computing
Thread

Figure 4.10: Graphene scheduling management.

to work on a single SSD in parallel. However, if each thread would need to juggle

IO and processing, this can lead to contention in the block layer, resulting in a lower

performance.

In Graphene, we assign two threads to collaboratively handle the IO and com-

putation on each SSD. Figure 4.10 presents an overview of the workflow. Initially

upon receiving updates to the Bitmap, a dedicated IO thread formulates and submits

IO requests to the SSD. Once the data is loaded in memory, the computing thread

retrieves the data from the IO buffer and works on the corresponding metadata. Us-

ing PageRank as an example, for currently active vertices, the IO thread would load

their in-neighbors (i.e., the vertices with a directed edge to active vertices) in the

IO buffer, further store them in the ring buffer. Subsequently, the computing thread

uses the rank values of those in-neighbors to update the ranks of active vertices. The

metadata of interest here is the rank array.

Graphene pins IO and computing threads to the CPU socket that is close to the

SSD they are working on. This NUMA-aware arrangement reduces the communica-

tion overhead between IO thread and SSD, as well as IO and computing threads. Our

test shows that this can improve the performance by 5% for various graphs.

Graphene utilizes a work stealing technique to mitigate computational imbalance

issue. As shown in Figure 4.10, each computing thread first works on the data in its

own IO buffer ring. Once it finishes processing its own data, this thread will check

the IO buffer of other computing threads. As long as other computing threads have

unprocessed data in IO buffers, this thread is allowed to help process them. This

procedure repeats until all data have been consumed.

Figure 4.11 presents the performance benefit from work stealing. On average,

114



 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

APSP BFS k-Core PR SpMV WCC

Sp
ee

du
p

Twitter Friendster

Figure 4.11: Benefit of workload stealing.

PageRank, SpMV, WCC and APSP achieve various speedup of 20%, 11%, 8% and

4%, respectively, compared to the baseline of not using workload stealing. On the

other hand, BFS and k-Core suffer slowdown of 1% and 3%. This is mostly because

the first four applications are more computation intensive while BFS and k-Core are

not. One drawback of workload stealing is lock contention at the IO buffer ring, which

can potentially lead to performance degradation, e.g., 8% for APSP on Friendster and

k-Core on Twitter.

4.6 HugePage Support

Graphene leverages the support of Direct HugePages (DHP), which preallocates

hugepages at boot time, to store and manage graph data and metadata structures,

e.g., IO buffer and Bitmap, shown as blue boxes in Figure 4.10. This is motivated

by our observation of high TLB misses, as the number of memory pages continues

to grow for large-scale graph processing. Because a TLB miss typically requires hun-

dreds of CPU cycles for the OS to go through the page table to figure out the physical

address of the page, this would greatly lower the graph algorithm performance.

In Graphene, the OS creates and maintains a pool of hugepages at machine boot

time when memory fragmentation is at the minimum. This is because any memory

fragmentation would break physical space into pieces and disrupt the allocation of

hugepages. We choose this approach over transparent hugepage (THP) in Linux [179]

for a couple of reasons. First, we find that THP introduces undesirable uncertainty at

runtime, because such a hugepage could be swapped out from memory [196]. Second,

THP does not always guarantee successful allocation and may incur high CPU over-

head. For example, when there were a shortage, the OS would need to aggressively

115



compress the memory in order to provide more hugepages [197].

Data IO. Clearly, if each IO request were to consume one hugepage, a large portion

of memory space would be wasted, because Graphene, even with IO merging, rarely

issues large (2MB) IO requests. Alternatively, Graphene allows multiple IO requests

to share hugepages. This consolidation is done through IO buffers in the IO Ring

Buffer. Given a batch of IO requests, Graphene first claims a buffer that contains

a varied number of continuous 2MB hugepages. As the IO thread works exclusively

with a buffer, all IO requests can in turn use any portion of it to store the data. Also,

consecutive IO requests will use continuous memory space in the IO buffer so that

there is no fragmentation. Note that the system needs to record the begin position

and length of each request within the memory buffer, which is later parsed and shared

with the user-defined Compute function in the IoIterator. In addition, direct IO is

utilized for loading disk blocks directly into hugepages. Comparing to buffered IO,

this method skips the step of copying data to system pagecache and further to user

buffer, i.e., double copy.

Metadata has been the focus of several prior works [184, 198, 185] to improve the

cache performance of various graph algorithms. As a first attempt, we have investi-

gated the use of page coloring [199, 200] to resolve cache contention, that is, to avoid

multiple vertices being mapped to the same cache line. With 4KB pages, we are able

to achieve around 5% improvement across various graphs. However, this approach

becomes incompatible when we use 2MB hugepages for metadata, as the number of

colors is determined by the LLC size (15MB), associativity (20) and page size.

To address this challenge, we decide to use hugepages for the metadata whose size

is at the order of O(|V |). In this work, we use 1GB hugepages, e.g., for PageRank,

a graph with one billion vertices will need 4GB memory for metadata, that is, four

1GB hugepages.

This approach brings several benefits. Figure 4.12 illustrates the reduction in TLB

miss introduced by this technique when running on a Kronecker graph. Across six

algorithms, we observe an average 177× improvement with the maximum of 309× for

PageRank. In addition, as prefetching is constrained by the page size, hugepages also

116



 0
 70

 140
 210
 280
 350

APSP BFS k-Core PR SpMV WCC

TL
B 

m
is

s 
re

du
ct

io
n 

(x
)

TLB

Figure 4.12: TLB misses reduced by hugepage-enabled buffer.

enables more aggressive hardware prefetching in LLC, now that the pages are orders

of magnitude bigger (1GB vs. 4KB). The test shows that this technique provides

around 10% speedup for these graph algorithms.

4.7 Graph Algorithms

Graphene implements a variety of graph algorithms to understand different graph

data and metadata, and their IO patterns. For all the algorithms, the sizes of data

and metadata are O(|E|) (total count of edges) and O(|V |) (total count of vertices),

respectively.

Breadth First Search (BFS) [70, 1] performs random reads of the graph data,

determined by the set of most recently visited vertices in the preceding level. The

statuses (visited or unvisited) of the vertices are maintained in the status array, a key

metadata in BFS. It is worthy to note that status array may experience more random

IOs, because the neighbors for a vertex tend to have different IDs, some of which are

far apart.

PageRank (PR) [43, 201] can calculate the popularity of a vertex by either pulling

the updates from its in neighbors or pushing its rank to out neighbors. The former

performs random IO on the rank array (metadata), whereas the latter requires se-

quential IO for graph data but needs locks while updating the metadata. In this

work, we adapt delta-step PageRank [72], where only vertices with updated ranks

should push their delta values to the neighbors, yet again requiring random IOs.

Weakly Connected Component (WCC) is a special type of subgraph whose

vertices are connected to each other. For directed graphs, a strongly connected com-

ponent exists if a directed path can be found between all pairs of vertices in the

117



subgraph [61]. In contrast, a WCC exists if such a path can be found regardless of

the edge direction. We implement the hybrid WCC detection algorithm presented

in [62], that is, it uses BFS to detect the largest WCC then uses label propagation

to compute remaining smaller WCCs. In this algorithm, the label array serves as the

metadata.

k-Core (KC) [48, 202] is another type of subgraph where each vertex has the degree

of at least k. Iteratively, a k-Core subgraph is found by removing the vertices from

the graph whose degree is less than k. As the vertices are removed, their neighbors

are affected, where the metadata – degree array – will need to be updated. Similar to

aforementioned algorithms, since the degree array is indexed by the vertex IDs, the

metadata IO in k-Core also tends to be random. k-Core is chosen in this work as it

presents alternating graph data IO patterns across different iterations. Specifically,

in the initial iterations, lots of vertices would be affected when a vertex is removed,

thus the graph data is retrieved likely in the sequential order. However at the later

iterations, fewer vertices will be affected, resulting in random graph data access.

All Pairs Shortest Path (APSP) calculates the shortest paths from all the ver-

tices in the graph. With APSP, one can further compute Closeness Centrality and

Reachability problems. Graphene combines multi-source traversals together, to re-

duce the total number of IOs needed during processing and the randomness exposed

during the metadata access [49, 2]. Similar to FlashGraph, we randomly select 32

source vertices for evaluation to reduce APSP execution time on large graphs.

Sparse Matrix Vector (SpMV) multiplication exhibits sequential access when

loading the matrix data, and random access for the vector. In this algorithm, the

matrix and vector serve the role as graph data and metadata, respectively. As a

comparison to BFS, SpMV is more IO friendly but equally challenging on cache

efficiency.

118



Name # Vertices # Edges Size Preprocess (seconds)

Clueweb 978M 42.6B 336GB 334
EU 1071M 92B 683GB 691
Friendster 68M 2.6B 20GB 3
Gsh 988M 33.8B 252GB 146
Twitter 53M 2.0B 15GB 2
UK 788M 48B 270GB 240
Kron30 1B 32B 256GB 141
Kron31 2B 1T 8TB 916

Table 4.2: Graph Datasets.

 0

 3

 6

 9

 12

APSP BFS k-Core PageRank WCC Avg.

14 28 23 18 56 21 20 20

1

Sp
ee

du
p

(a) Gsh

FlashGraph X-Stream GridGraph PowerGraph Galois Ligra

OOM N.A.

 0

 3

 6

 9

 12

APSP BFS k-Core PageRank WCC Avg.

56 37 19 13 23 24 20 22

1
Sp

ee
du

p

(b) Kron 30

N.A. N.A.

Figure 4.13: Graphene vs. state-of-the-art.

4.8 Evaluations

We have implemented a prototype of Graphene in 3,300 lines of C++ code, where the

IoIterator accounts for 1,300 lines and IO functions 800 lines. Six graph algorithms

are implemented with average 200 lines of code. We perform our experiments on a

server with a dual-socket Intel Xeon E5-2620 processor (total 12 cores and 24 threads

with hyperthreading), 128GB memory, 16 500GB Samsung 850 SSDs connected with

two LSI SAS 9300-8i host bus adapters, and Linux kernel 4.4.0.

Table 4.2 lists all the graphs used in this paper. Specifically, Twitter [11] and

Friendster [193] are real-world social graphs. In particular, Twitter contains 52,579,682

vertices and 1,963,263,821 edges, and Friendster is an online gaming network with

68,349,466 vertices and 2,586,147,869 edges. In addition, Clueweb [203], EU [204],

Gsh [205] and UK [206] are webpage based graphs provided by webgraph [53, 207, 208].

Among them, EU is the largest with over one billion of vertices and 90 billion of edges.

On the other hand, two Kronecker graphs are generated with the Graph500 genera-

119



 0
 0.5

 1
 1.5

 2
 2.5

 3

APSP BFS k-Core PR SpMV WCC

Sp
ee

du
p

Clueweb
EU

Friendster
Gsh

Twitter
UK

 0
 0.5

 1
 1.5

 2
 2.5

 3

APSP BFS k-Core PR SpMV WCC

Sp
ee

du
p

Clueweb
EU

Friendster
Gsh

Twitter
UK

 0
 0.5

 1
 1.5

 2
 2.5

 3

APSP BFS k-Core PR SpMV WCC

Sp
ee

du
p

Clueweb
EU
Friendster

Gsh
Twitter
UK

(a) Bitmap vs. Pluglist. (b) HugePage vs. 4K Page. (c) Dedicated threads.

Figure 4.14: Overall performance benefits of IO techniques.

tor [83] with scale 30 and 31, which represent the number of vertices as 1 billion (230)

and 2 billion (231), with number of edges of 32 billion and 1 trillion. This paper, by

default uses 8 bytes to represent a vertex ID unless explicitly noted. We run the tests

five times and report the average values.

In addition, Table 4.2 presents the time consumption of the preprocessing step of

the row-column balanced 2D partition. On average, our partition method takes 50%

longer time than the conventional 2D partition method, e.g., preprocessing the largest

Kron31 graph takes 916 seconds. Note that except X-Stream, many graph systems,

including FlashGraph, GridGraph, PowerGraph, Galois and Ligra, also require similar

or longer preprocessing to prepare the datasets. In the following, we report the

runtime of graph algorithms, excluding the preprocessing time for all graph systems.

4.8.1 Comparison with the State of the Art

We compare Graphene against FlashGraph (semi-external memory), X-Stream (ex-

ternal memory), GridGraph (external memory), PowerGraph (in-memory), Galois

(in-memory), and Ligra (in-memory) when running various algorithms. Figure 4.13

reports the speedup of Graphene over different systems for all five algorithms. SpMV

is currently not supported in other systems except our Graphene, and k-Core is only

provided by FlashGraph, PowerGraph and Graphene. In the figure the label “NA” in-

dicates lack of support in the system. In this test, we choose one real graph (Gsh) and

one synthetic graph (Kron30). Note that Gsh is the largest graph that is supported

by in-memory systems. We have observed similar performance on other graphs.

In general, Graphene outperforms external memory systems FlashGraph, Grid-

Graph and X-Stream by 4.3×, 7.8× and 20×, respectively. Compared to in-memory

120



Name APSP BFS k-Core PageRank WCC SpMV

Kron31 7,233 2,630 318 25,023 3,023 5,706

Table 4.3: Graphene runtime on Kron31 (seconds).

systems PowerGraph, Galois and Ligra where all graph data are stored in DRAM,

Graphene keeps the data on SSDs and reads on-demand, outperforming PowerGraph

by 21× and achieving a comparable performance with the other two (90% for Galois

and 1.1× for Ligra). Excluding BFS which is the most IO intensive and favors in-

memory data, Graphene outperforms Galois and Ligra by 10% and 45%, respectively.

We also compare Graphene with an emerging Differential Dataflow system [209] and

Graphene is able to deliver an order of magnitude speedup on BFS, PageRank and

WCC.

For the Gsh graph, as shown in Figure 4.13, Graphene achieves better performance

than other graph systems for different algorithms with exceptions for BFS and WCC.

For example, for APSP, Graphene outperforms PowerGraph by 29×, Galois by 35%,

Ligra by 50%, FlashGraph by 7.2× and X-Stream by 14×. For BFS and WCC,

Graphene runs faster than GridGraph, PowerGraph, FlashGraph and X-Stream, but

is slower than the two in-memory systems, mostly due to relatively long access latency

on SSDs compared to DRAM. Similar performance benefits can also be observed on

the syntheic Kron30 graph.

Trillion-edge graph. We further evaluate the performance of Graphene on Kron31

as presented in Table 4.3. On average, all algorithms take around one hour to finish,

with the maximum from PageRank of 6.9 hours while k-Core can be completed in 5.3

minutes. To the best of our knowledge, this is among the first attempts to evaluate

trillion-edge graphs on a external-memory graph processing system.

4.8.2 Benefits of IO Techniques

This section examines the impacts on the overall system performance brought by

different techniques independently, including Bitmap, hugepage, and dedicated IO

and computing threads. We run all six algorithms on all six real-world graphs.

121



 0
 30
 60
 90

 120

APSP BFS k-Core WCC APSP BFS k-Core WCC

Pe
rc

en
ta

ge
 (%

)

 

IO Compute

After Bitmap     Before Bitmap        

Figure 4.15: Runtime breakdown of IO and computing with Bitmap-based IO.

The Bitmap provides an average 27% improvement over using the pluglist as

presented in Figure 4.14(a). Clearly, Bitmap favors the algorithms with massive

random IOs such as WCC and BFS and low diameter graphs such as Gsh, EU, and

Friendster. For example, Bitmap achieves about 70% speedup on Gsh on both BFS

and WCC, and 30% for other algorithms.

Figure 4.14(b) compares the performance of hugepages and 4KB pages. Hugepages

provides average 12% improvement and the speedup varies from 17% for WCC to 6%

for k-Core. Again, two largest improvements are achieved on the (largest) Gsh graph

for SpMV and WCC.

The benefit introduced by dedicated IO and computing threads is presented in

Figure 4.14(c), where the baseline is using one thread for both IO and computing. In

this case, Graphene achieves an average speedup of 54%. Particularly, PageRank and

SpMV enjoy significant higher improvement (about 2×) than the other algorithms.

4.8.3 Analysis of Bitmap-based IO

We study how Bitmap-based IO affects the IO and computing ratio of different algo-

rithms in Figure 4.15. Without bitmap, all four algorithms spend about 60% on IO

and 40% on computation. In comparison, the distribution of runtime reverses with

bitmap, where computation takes average 60% of the time and IO 40%. Because the

IO time is significantly reduced, faster IO as a result accelerates the execution of the

algorithms. In particular, the biggest change comes from k-Core where IO accounts

for 87% and 34% before and after bitmap.

As shown in Figure 4.16, when compared to a pluglist-based approach, the Bitmap-

based IO runs 5.5×, 2.6×, 5.6×, 5.7× and 2.5× faster on APSP, BFS, k-Core, PageR-

122



 0

 5

 10

 15

APSP BFS k-Core PageRank WCC

1
Sp

ee
du

p

Clueweb
EU

Friendster
Gsh

Twitter
UK

 0

 2

 4

 6

 8

 10

APSP BFS k-Core PageRank WCC

15 20

Ra
tio

 (%
)

Clueweb
EU
Friendster
Gsh
Twitter
UK

(a) Preparing Bitmap vs. Pluglist. (b) Overhead.

Figure 4.16: Bitmap performance and overhead.

ank, and WCC, respectively. Note that here we only evaluate the time consumption

of preparing the bitmap and pluglist, which is different from overall system perfor-

mance presented in Figure 4.14. On the other hand, in most cases, adding Bitmap

incurs a small increase of about 3.4% of total IO time. However, for a few cases with

relatively high overhead, it is most likely caused by the small size of the graph data

(e.g., Friendster and Twitter), as well as random IOs of the algorithms (e.g., BFS).

The time spent on Bitmap varies from about 60 milliseconds for PR and SpMV (less

than 1% of total IO time), to 100 seconds for APSP (2.3% of IO time).

 0
 100
 200
 300
 400
 500
 600

FI1 FI2 WS1 WS2 WS3

Ti
m

e 
(s

ec
on

d)

Bitmap
Linux

Figure 4.17: Bitmap-based IO performance on traces.

 0

 1

 2

 3

 4

 5

APSP BFS k-Core PageRank WCC

S
p
e
e
d
u
p

Friendster Twitter

 0

 1

 2

 3

 4

 5

APSP BFS k-Core PageRank WCC

S
p
e
e
d
u
p

Friendster Twitter

 0

 1

 2

 3

 4

 5

APSP BFS k-Core PageRank WCC

S
p
e
e
d
u
p

Friendster Twitter

(a) HDD (b) NVMe (c) Ramdisk

Figure 4.18: Bitmap performance on HDD, NVMe and Ramdisk.

Bitmap-based IO can be applied to other applications beyond graph processing.

Figure 4.17 examines the time consumption differences between Bitmap based IO and

Linux IO. Here we replay the reads in five IO traces as quickly as possible, namely

Financial 1-2 and WebSearch 1-3 from UMass Trace Repository [210]. On average,

123



 0

 1

 2

 3

 4

 5

 1  2  4  8  16

Sp
ee

du
p

# SSDs

APSP BFS PR k-Core SpMV WCC

Figure 4.19: Graphene scalability on the Kron30 graph.

the Bitmap is 38× faster than Linux IO, with the maximum speedup of 74× obtained

on Financial2 (from 94.2 to 1.26 seconds). The improvement comes mostly from more

(9.3×) deduplicated IOs and more aggressive IO merging.

Figure 4.18 further studies the impacts of bitmap based IO on hard disk (HDD),

NVMe and Ramdisk. In this test, we use five Seagate 7200RPM SATA III hard

drives in a Raid-0 configuration, and one Samsung 950 Pro NVMe device. One can

see that compared to the pluglist based method, although bitmap improves hard disk

performance only marginally (1% on average), faster storage devices such as NVMe

and Ramdisk are able to achieve about 70% improvement in IO performance.

4.8.4 Scalability, Utility, and Throughput

This section studies the scalability of Graphene with respect to the number of SSDs.

Recall that Graphene uses two threads per SSD, one IO and another compute. Using

a single thread would fail to fully utilize the bandwidth of an SSD. As shown in

Figure 4.19, Graphene achieves an average 3.3× speedup on the Kron30 graph when

scaling from a single SSD (two threads) to eight SSDs (16 threads). Across different

applications, SpMV enjoys the biggest 3.7× speedup and PageRank the smallest 2.6×.

The small performance gain from 8 to 16 SSDs is due to the shift of the bottleneck

from IO to CPU.

Recall that IO utility is defined as the ratio of useful data and total data loaded, we

evaluate the IO utility when using 512-byte IO vs. 4KB IO on various algorithms and

graph datasets. As presented in Figure 4.20, Graphene achieves 20% improvement

on average. For APSP and BFS, one can see about 30% improvement with the best

benefit of 50% on UK. Similar speedups can also be observed for K-Core and WCC.

124



 0

 0.5

 1

 1.5

 2

APSP BFS k-Core PageRank WCC

IO
 E

ffi
ci

en
cy

 Im
pr

ov
em

en
t

Clueweb
EU

Gsh
UK

Figure 4.20: Utility of 512-byte vs. 4KB IO.

In contrast, PageRank and SpMV present minimal benefit because the majority of

their iterations load the whole graph.

 0
 160
 320
 480

 0  50  100  150  200

Th
ro

ug
hp

ut
 (M

B/
s)

Time elapse
(a) BFS

Min Median Max

 0
 160
 320
 480

 0  50  100  150  200 Time elapse
(b) PageRank

Figure 4.21: Throughputs of the fastest (max) and slowest (min) SSDs, and median
throughput out of 16 SSDs.

To demonstrate the IO loads of different disks in Graphene, we further examine

the throughput of 16 SSDs for two applications, BFS and PageRank. Figure 4.21

show the throughput for the fastest (max) and slowest (min) SSDs, as well as the

median throughput. Clearly, the 16 SSDs are able to deliver similar IO performance

for most of run, with an average difference of 6 to 15 MB/s (5-7% for PageRank and

BFS). For both algorithms, the slowest disk does require extra time to complete the

processing, which we leave for future research to close the gap.

125



Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we develop Enterprise, a new GPU-based BFS system, that

produces over 70 billion TEPS on a single GPU and 122 billion TEPS on two GPUs,

delivering 446 million TEPS per Watt. This is achieved by efficient management of

numerous GPU streaming processors and unique memory hierarchy. As part of future

work, we plan to integrate Enterprise with high-speed storage and networking devices

and run on even larger graphs. We further present iBFS, a new GPU-based concurrent

BFS system which leverages a novel GroupBy strategy, combined with joint frontier

queue and bitwise operations, to achieve high-performance concurrent breadth-first

traversals. iBFS achieves unprecedented performance of over 57,000 billion TEPS on

over 100 GPUs. As part of future work, we plan to explore additional optimizations

for iBFS and study its application on a wide range of domains.

This dissertation further proposes SIMD-X, a parallel graph computing framework

that supports programming and processing of single instruction multiple, complex,

data on GPUs. Specifically, the Active-Compute-Combine (ACC) model provides ease

of programming to programmers, while just-in-time task management and push-pull

based kernel fusion leverage the opportunities for system-level optimization. Using

SIMD-X, a user can program a graph algorithm in tens of lines of code, while achieving

upto an order of magnitude speedup compared to the state-of-the-art [4, 211, 212].

126



Last but not the least, our Graphene – a big graph analytics system – consists

of a number of novel techniques including IO centric processing, Bitmap-based asyn-

chronous IO, hugepage support, data and workload balancing. It allows the users

to treat the data as in-memory, while delivering high-performance on SSDs. The

experiments show that Graphene is able to perform comparably against in-memory

processing systems on large-scale graphs, and also runs several times faster than ex-

isting external-memory processing systems.

5.2 Future Work

Graph computation becomes a hot topic recently and many challenges await re-

searchers. For instance, graph challenge [213] unveils an aggressive goal: accelerating

graph computation by 1,000×. Though my previous research can achieve one order

of magnitude speedup, it is still far from 1,000×.

My future research will center around further improving the performance of graph

analytics through hardware and software co-designed platforms. Particularly, neither

moving data from storage media to CPU in off-the-shelf hardware nor dispatching

instructions to storage media as proposed in Processing In Memory (PIM) is enough

to fully accelerate graph analytics. We admit PIM can partially address the data

movement problem, but it faces several remaining challenges, e.g., balancing the data

mapping across different PIM cells, and addressing heavy communication overhead

across PIM units. As a result, I plan to (1) enhance my existing row-column balanced

partitioning method to help balance the workload distribution for PIM architecture;

(2) through my expertise in graph algorithms, improve the hardware design of PIM,

e.g., graph-aware atomic operation support and diverse page sizes; (3) design better

software layers for PIM hardware that could fully exploit hardware potential and

expose easy programming interfaces to end user.

127



Bibliography

[1] H. Liu and H. H. Huang, “Enterprise: Breadth-first graph traversal on gpu

servers,” in International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC), 2015.

[2] H. Liu, H. H. Huang, and Y. Hu, “ibfs: Concurrent breadth-first search on

gpus,” in Proceedings of the 2016 International Conference on Management of

Data (SIGMOD), 2016.

[3] H. Liu and H. H. Huang, “Simd-x: Programming and processing of graph al-

gorithms on gpus,” in Under submission, 2017.

[4] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gun-

rock: A high-performance graph processing library on the gpu,” in Proceedings

of SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP), 2016.

[5] H. Liu and H. H. Huang, “Graphene: Fine-grained io management for graph

computing,” in Proceedings of the 15th USENIX Conference on File and Storage

Technologies. USENIX Association, 2017.

[6] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure for graph

analytics,” in Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP). ACM, 2013, pp. 456–471.

[7] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or

a news media?” in WWW, 2010.

128



[8] D. Levinthal, “Performance analysis guide for intel core i7 processor and intel

xeon 5500 processors,” Intel Performance Analysis Guide, 2009.

[9] NVIDIA Corporation, “Nvidia cuda c programming guide,” 2011.

[10] Sandisk SSD VS. HDD, “https://www.sandisk.com/content/

dam/sandisk-main/en us/assets/resources/enterprise/infographics/

how-do-ssds-stack-up-against-hdds.pdf,” 2016.

[11] Twitter (MPI) Network Dataset – KONECT, “http://konect.uni-koblenz.de/

networks/twitter mpi,” 2016.

[12] Facebook Friend Recommendation Algorithm, “https://techcrunch.com/2017/

06/27/facebook-2-billion-users/k.”

[13] H. H. Huang and H. Liu, “Big data machine learning and graph analytics:

Current state and future challenges,” in Big Data (Big Data), 2014 IEEE In-

ternational Conference on. IEEE, 2014, pp. 16–17.

[14] B. Zheng, H. Su, W. Hua, K. Zheng, X. Zhou, and G. Li, “Efficient clue-based

route search on road networks,” IEEE Transactions on Knowledge and Data

Engineering, 2017.

[15] B. Zheng, N. J. Yuan, K. Zheng, X. Xie, S. Sadiq, and X. Zhou, “Approximate

keyword search in semantic trajectory database,” in Data Engineering (ICDE),

2015 IEEE 31st International Conference on. IEEE, 2015, pp. 975–986.

[16] B. Zheng, H. Wang, K. Zheng, H. Su, K. Liu, and S. Shang, “Sharkdb: an

in-memory column-oriented storage for trajectory analysis,” World Wide Web,

pp. 1–31, 2017.

[17] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A comparative anal-

ysis of data center network architectures,” in 2014 IEEE International Confer-

ence on Communications (ICC). IEEE, 2014, pp. 3106–3111.

129



[18] J. Wu, S. Subramaniam, and H. Hasegawa, “Optimal nonuniform wavebanding

in wdm mesh networks,” Photonic Network Communications, vol. 31, no. 3, pp.

376–385, 2016.

[19] J. Wu, M. Xu, S. Subramaniam, and H. Hasegawa, “Routing, fiber, band,

and spectrum assignment (rfbsa) for multi-granular elastic optical networks,”

in Communications (ICC), 2017 IEEE International Conference on. IEEE,

2017, pp. 1–6.

[20] J. Wu, J. Zhao, and S. Subramaniam, “Co-scheduling computational and net-

working resources in elastic optical networks,” in Communications (ICC), 2014

IEEE International Conference on. IEEE, 2014, pp. 3307–3312.

[21] C. Liu, M. Xu, and S. Subramaniam, “A reconfigurable high-performance opti-

cal data center architecture,” in Global Communications Conference (GLOBE-

COM), 2016 IEEE. IEEE, 2016, pp. 1–6.

[22] M. Xu, C. Liu, and S. Subramaniam, “Podca: A passive optical data center

architecture,” in Communications (ICC), 2016 IEEE International Conference

on. IEEE, 2016, pp. 1–6.

[23] Y. Xiang, H. Liu, T. Lan, H. Huang, and S. Subramaniam, “Optimizing job

reliability via contention-free, distributed scheduling of vm checkpointing,” in

Proceedings of the ACM SIGCOMM workshop on Distributed cloud computing,

2014.

[24] Y. Xiang, H. Liu, T. Lan, H. Huang, and S. Subramaniam, “Optimizing job

reliability through contention-free, distributed checkpoint scheduling,” Tech.

Rep.

[25] G. Song, M. Chao, B. Yang, and Y. Zheng, “Tlr: A traffic-light-based intelligent

routing strategy for ngeo satellite ip networks,” IEEE Transactions on Wireless

Communications, vol. 13, no. 6, pp. 3380–3393, June 2014.

130



[26] G. SONG, M. CHAO, B. YANG, H. ZHONG, and Y. ZHENG, “Study on multi-

path qos routing strategy in satellite networks [j],” Journal of Spacecraft TT&C

Technology, vol. 6, p. 004, 2012.

[27] G. Song, M. Chao, B. Yang, H. Zhong, and Y. Zheng, “Research on multi-

path qos routing strategy for the satellite network,” in Proceedings of the 26th

Conference of Spacecraft TT&C Technology in China. Springer, 2013, pp.

289–298.

[28] F. Yao, Y. Li, Y. Chen, H. Xue, T. Lan, and G. Venkataramani, “Statsym:

vulnerable path discovery through statistics- guided symbolic execution,” in

Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN), 2017.

[29] H. Xue, Y. Chen, F. Yao, Y. Li, T. Lan, and G. Venkataramani, “Simber:

Eliminating redundant memory bound checks via statistical inference,” in IFIP

International Conference on ICT Systems Security and Privacy Protection.

Springer, Cham, 2017, pp. 413–426.

[30] Y. Zhao, Y. Jian, Z. Liu, H. Liu, Q. Liu, C. Chen, Z. Li, L. Wang, H. H. Huang,

and C. Zeng, “Network analysis reveals the recognition mechanism for dimer

formation of bulb-type lectins,” in Nature Scientific Report, 2017.

[31] Y. Jian, Y. Zhao, and C. Zeng, “Network analysis reveals the recognition mech-

anism for complex formation of mannose-binding lectins,” Bulletin of the Amer-

ican Physical Society, vol. 62, 2017.

[32] H. Liu, J.-H. Seo, R. Mittal, and H. H. Huang, “Matrix decomposition based

conjugate gradient solver for poisson equation,” in High Performance Comput-

ing, Networking, Storage and Analysis (SCC), 2012 SC Companion:. IEEE,

2012, pp. 1499–1500.

131



[33] H. Liu, J.-H. Seo, R. Mittal, and H. H. Huang, “Gpu-accelerated scalable solver

for banded linear systems,” in IEEE International Conference on Cluster Com-

puting (CLUSTER). IEEE, 2013, pp. 1–8.

[34] R. Mittal, J. H. Seo, V. Vedula, Y. J. Choi, H. Liu, H. H. Huang, S. Jain,

L. Younes, T. Abraham, and R. T. George, “Computational modeling of cardiac

hemodynamics: current status and future outlook,” Journal of Computational

Physics, vol. 305, pp. 1065–1082, 2016.

[35] F. Li, T. Xu, D.-H. T. Nguyen, X. Huang, C. S. Chen, and C. Zhou, “Label-free

evaluation of angiogenic sprouting in microengineered devices using ultrahigh-

resolution optical coherence microscopy,” Journal of biomedical optics, vol. 19,

no. 1, pp. 016 006–016 006, 2014.

[36] F. Li, Y. Song, A. Dryer, W. Cogguillo, Y. Berdichevsky, and C. Zhou,

“Nondestructive evaluation of progressive neuronal changes in organotypic rat

hippocampal slice cultures using ultrahigh-resolution optical coherence mi-

croscopy,” Neurophotonics, vol. 1, no. 2, pp. 025 002–025 002, 2014.

[37] C.-K. Yeh, N. Matsuda, X. Huang, F. Li, M. Walton, and O. Cossairt, “A

streamlined photometric stereo framework for cultural heritage,” in European

Conference on Computer Vision. Springer, 2016, pp. 738–752.

[38] T. Xu, F. Li, D.-H. T. Nguyen, C. S. Chen, C. Zhou, and X. Huang, “Delin-

eating 3d angiogenic sprouting in oct images via multiple active contours,” in

Augmented Reality Environments for Medical Imaging and Computer-Assisted

Interventions. Springer, 2013, pp. 231–240.

[39] F. Li, N. Matsuda, M. Walton, and O. Cossairt, “Fluorescence lifetime esti-

mation using a dynamic vision sensor,” in SPIE Commercial+ Scientific Sens-

ing and Imaging. International Society for Optics and Photonics, 2017, pp.

102 220N–102 220N.

[40] Gnutella, “https://sourceforge.net/projects/gtk-gnutella/.”

132



[41] Large Networks Visualization Tool (Lanet-vi), “http://lanet-vi.fi.uba.ar/.”

[42] J. Gräßler, D. Koschützki, and F. Schreiber, “Centilib: comprehensive analysis

and exploration of network centralities,” Bioinformatics, 2012.

[43] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-

ing: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[44] Google Map, “https://developers.google.com/maps/premium/.”

[45] simFlow: Comprehensive CFD software, “https://sim-flow.com/.”

[46] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program

analysis & transformation,” in Proceedings of the International Symposium on

Code Generation and Optimization: Feedback-Directed and Runtime Optimiza-

tion (CGO), 2004.

[47] Facebook Friend Recommendation Algorithm, “https://www.quora.com/

How-does-Facebooks-friend-recommendation-system-work.”

[48] A. Montresor, F. De Pellegrini, and D. Miorandi, “Distributed k-core decom-

position,” IEEE Transactions on Parallel and Distributed Systems, 2013.

[49] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham, A. Kemper,

T. Neumann, and H. T. Vo, “The more the merrier: Efficient multi-source graph

traversal,” Proceedings of the VLDB Endowment, vol. 8, no. 4, 2014.

[50] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and sam-

pling triangles from a graph stream,” Proceedings of the VLDB Endowment,

vol. 6, no. 14, pp. 1870–1881, 2013.

[51] P. Kumar and H. H. Huang, “G-store: High-performance graph store for trillion-

edge processing,” in Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis (SC), 2016.

133



[52] P. Kumar and H. H. Huang, “Falcon: Scaling io performance in multi-ssd vol-

umes,” in USENIX Annual Technical Conference (USENIX ATC). USENIX

Association, 2017, pp. 41–53.

[53] P. Boldi and S. Vigna, “The WebGraph framework I: Compression techniques,”

in Proc. of the Thirteenth International World Wide Web Conference (WWW),

Manhattan, USA, 2004.

[54] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel pro-

cessing of compressed graphs with ligra+,” in Data Compression Conference

(DCC), 2015. IEEE, 2015, pp. 403–412.

[55] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the gpu

using cuda,” in High performance computing–HiPC 2007. Springer, 2007, pp.

197–208.

[56] H. Yanagisawa, “A multi-source label-correcting algorithm for the all-pairs

shortest paths problem,” in International Symposium on Parallel & Distributed

Processing (IPDPS). IEEE, 2010, pp. 1–10.

[57] I.-L. Wang, E. L. Johnson, and J. S. Sokol, “A multiple pairs shortest path

algorithm,” Transportation science, vol. 39, no. 4, pp. 465–476, 2005.

[58] R. Seidel, “On the all-pairs-shortest-path problem in unweighted undirected

graphs,” Journal of computer and system sciences, vol. 51, no. 3, pp. 400–403,

1995.

[59] A. Sarje and S. Aluru, “All-pairs computations on many-core graphics proces-

sors,” Parallel Computing, vol. 39, no. 2, pp. 79–93, 2013.

[60] U. Meyer and P. Sanders, “δ-stepping: A parallel single source shortest path

algorithm,” Algorithms—ESA’98, 1998.

[61] S. Hong, N. C. Rodia, and K. Olukotun, “On fast parallel detection of strongly

connected components (scc) in small-world graphs,” in Proceedings of Interna-

134



tional Conference for High Performance Computing, Networking, Storage and

Analysis (SC), 2013.

[62] G. M. Slota, S. Rajamanickam, and K. Madduri, “Bfs and coloring-based par-

allel algorithms for strongly connected components and related problems,” in

International Parallel and Distributed Processing Symposium (IPDPS), 2014.

[63] Nvidia, “Nvidia kepler gk110 architecture whitepaper,” 2013.

[64] Nvidia Profiler Tools, “http://docs.nvidia.com/cuda/profiler-users-guide/.”

[65] Green Graph500, “http://green.graph500.org/.”

[66] J. Chen, F. Yao, and G. Venkataramani, “Watts-inside: A hardware-software

cooperative approach for multicore power debugging,” in 31st International

Conference on Computer Design (ICCD). IEEE, 2013, pp. 335–342.

[67] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A dual delay timer

strategy for optimizing server farm energy,” in 7th International Conference

on Cloud Computing Technology and Science (CloudCom). IEEE, 2015, pp.

258–265.

[68] F. Yao, J. Wu, S. Subramaniam, and G. Venkataramani, “Wasp: Workload

adaptive energy-latency optimization in server farms using server low-power

states,” in IEEE International Conference on Cloud Computing (CLOUD),

2017.

[69] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-mat: A recursive model for

graph mining.” in SDM, 2004.

[70] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing breadth-first

search,” in International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC). IEEE, 2012, pp. 1–10.

[71] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing framework

for shared memory,” in PPoPP, 2013.

135



[72] Y. Zhang, Q. Gao, L. Gao, and C. Wang, “Maiter: An asynchronous graph pro-

cessing framework for delta-based accumulative iterative computation,” IEEE

Transactions on Parallel and Distributed Systems, 2014.

[73] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda graph

algorithms at maximum warp,” in PPoPP, 2011.

[74] D. Merrill, M. Garland, and A. Grimshaw, “Scalable gpu graph traversal,” in

PPoPP, 2012.

[75] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens, “Gunrock:

A high-performance graph processing library on the gpu,” in Proceedings of

the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming. ACM, 2015, pp. 265–266.

[76] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S. Szalay,

“Flashgraph: processing billion-node graphs on an array of commodity ssds,” in

Proceedings of the 13th USENIX Conference on File and Storage Technologies.

USENIX Association, 2015, pp. 45–58.

[77] S. Dolev, Y. Elovici, and R. Puzis, “Routing betweenness centrality,” Journal

of the ACM (JACM), vol. 57, no. 4, p. 25, 2010.

[78] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-Miranda, “A

faster parallel algorithm and efficient multithreaded implementations for evalu-

ating betweenness centrality on massive datasets,” in International Symposium

on Parallel & Distributed Processing (IPDPS). IEEE, 2009, pp. 1–8.

[79] A. McLaughlin and D. A. Bader, “Scalable and high performance between-

ness centrality on the gpu,” in International Conference for High Performance

Computing, Networking, Storage and Analysis (SC). IEEE, 2014, pp. 572–583.

[80] V. Ufimtsev and S. Bhowmick, “Application of group testing in identifying

high betweenness centrality vertices in complex networks,” in 11th Workshop

on Machine Learning with Graphs, KDD, 2013.

136



[81] P. W. Olsen, A. G. Labouseur, and J.-H. Hang, “Efficient top-k closeness

centrality search,” in International Conference on Data Engineering (ICDE).

IEEE, 2014, pp. 196–207.

[82] A. E. Sarıyüce, E. Saule, K. Kaya, and Ü. V. Çatalyürek, “Regularizing graph

centrality computations,” Journal of Parallel and Distributed Computing, 2014.

[83] Graph500, “http://www.graph500.org/.”

[84] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási, “The large-

scale organization of metabolic networks,” Nature, vol. 407, no. 6804, pp. 651–

654, 2000.

[85] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the world-wide

web,” Nature, vol. 401, no. 6749, pp. 130–131, 1999.

[86] B. A. Huberman and L. A. Adamic, “Internet: Growth dynamics of the world-

wide web,” Nature, 1999.

[87] D. Easley and J. Kleinberg, Networks, crowds, and markets: Reasoning about

a highly connected world. Cambridge University Press, 2010.

[88] Y. Ji, Y. He, X. Jiang, J. Cao, and Q. Li, “Combating the evasion mechanisms

of social bots,” computers & security, vol. 58, pp. 230–249, 2016.

[89] J. Cao, Q. Li, Y. Ji, Y. He, and D. Guo, “Detection of forwarding-based mali-

cious urls in online social networks,” International Journal of Parallel Program-

ming, vol. 44, no. 1, pp. 163–180, 2016.

[90] Y. Ji, Y. He, X. Jiang, and Q. Li, “Towards social botnet behavior detecting in

the end host,” in Parallel and Distributed Systems (ICPADS), 2014 20th IEEE

International Conference on. IEEE, 2014, pp. 320–327.

[91] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus topology-driven

irregular computations on gpus,” in IPDPS, 2013.

137



[92] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph exploration on

multi-core cpu and gpu,” in International Conference on Parallel Architectures

and Compilation Techniques (PACT). IEEE, 2011.

[93] D. Li and M. Becchi, “Deploying graph algorithms on gpus: An adaptive solu-

tion,” in IPDPS, 2013.

[94] U. Brandes, “A faster algorithm for betweenness centrality*,” Journal of Math-

ematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[95] H. Yildirim, V. Chaoji, and M. J. Zaki, “Grail: Scalable reachability index

for large graphs,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp.

276–284, 2010.

[96] J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu, “K-reach: who is in

your small world,” Proceedings of the VLDB Endowment, vol. 5, no. 11, pp.

1292–1303, 2012.

[97] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-hop: a high-compression indexing

scheme for reachability query,” in Proceedings of the SIGMOD International

Conference on Management of data. ACM, 2009, pp. 813–826.

[98] S. Mahajan and J. Malhotra, “Energy efficient path determination in wireless

sensor network using bfs approach,” Wireless Sensor Network, vol. 3, no. 11, p.

351, 2011.

[99] R. Albert, H. Jeong, and A.-L. Barabási, “Error and attack tolerance of complex

networks,” nature, vol. 406, no. 6794, pp. 378–382, 2000.

[100] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous localization and

map building in large-scale cyclic environments using the atlas framework,” The

International Journal of Robotics Research, vol. 23, no. 12, pp. 1113–1139, 2004.

[101] S. Ichikawa, “Navigation system and method for calculating a guide route,”

Feb. 26 2002, uS Patent 6,351,707.

138



[102] A. Bonifati, R. Ciucanu, and A. Lemay, “Learning path queries on graph

databases,” in 18th International Conference on Extending Database Technology

(EDBT), 2014.

[103] M. Najork and J. L. Wiener, “Breadth-first crawling yields high-quality pages,”

in Proceedings of the 10th international conference on World Wide Web. ACM,

2001, pp. 114–118.

[104] X. Lu, T. Q. Phan, and S. Bressan, “Incremental algorithms for sampling dy-

namic graphs,” in Database and Expert Systems Applications. Springer, 2013,

pp. 327–341.

[105] A. E. Sariyuce, E. Saule, K. Kaya, and U. V. Catalyurek, “Hardware/software

vectorization for closeness centrality on multi-/many-core architectures,”

in International Parallel & Distributed Processing Symposium Workshops

(IPDPSW). IEEE, 2014, pp. 1386–1395.

[106] L. Luo, M. Wong, and W.-m. Hwu, “An effective gpu implementation of

breadth-first search,” in Proceedings of the 47th design automation conference.

ACM, 2010, pp. 52–55.

[107] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,

“Scalable work stealing,” in SC, 2009.

[108] D. Cederman and P. Tsigas, “On dynamic load balancing on graphics proces-

sors,” in GH, 2008.

[109] S. Tzeng, A. Patney, and J. D. Owens, “Task management for irregular-parallel

workloads on the gpu,” in Proceedings of the Conference on High Performance

Graphics. Eurographics Association, 2010.

[110] A. Cohen, T. Grosser, P. H. Kelly, J. Ramanujam, P. Sadayappan, S. Ver-

doolaege et al., “Split tiling for gpus: Automatic parallelization using trape-

zoidal tiles to reconcile parallelism and locality, avoiding divergence and load

imbalance,” in GPGPU, 2013.

139



[111] Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle for billion-

node graphs,” VLDB, 2013.

[112] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:

Distributed graph-parallel computation on natural graphs.” in OSDI, vol. 12,

no. 1, 2012, p. 2.

[113] R. Pearce, M. Gokhale, and N. M. Amato, “Scaling techniques for massive

scale-free graphs in distributed (external) memory,” in IPDPS, 2013.

[114] P. Klodt, G. Weikum, S. Bedathur, and S. Seufert, “Indexing strategies for

constrained shortest paths over large social networks,” Ph.D. dissertation, 2011.

[115] H. Cao, K. S. Candan, and M. L. Sapino, “Skynets: Searching for minimum

trees in graphs with incomparable edge weights,” in Proceedings of the 20th

ACM international conference on Information and knowledge management.

ACM, 2011, pp. 1775–1784.

[116] J. Gao, J. X. Yu, R. Jin, J. Zhou, T. Wang, and D. Yang, “Neighborhood-

privacy protected shortest distance computing in cloud,” in Proceedings of the

2011 ACM SIGMOD International Conference on Management of data. ACM,

2011, pp. 409–420.

[117] W. Yu, X. LIN, W. Zhang, J. McCann et al., “Fast all-pairs simrank assessment

on large graphs and bipartite domains,” 2014.

[118] A. D. Zhu, X. Xiao, S. Wang, and W. Lin, “Efficient single-source shortest

path and distance queries on large graphs,” in Proceedings of the 19th ACM

SIGKDD international conference on Knowledge discovery and data mining.

ACM, 2013, pp. 998–1006.

[119] J. Zhong and B. He, “Parallel graph processing on graphics processors made

easy,” Proceedings of the VLDB Endowment, vol. 6, no. 12, pp. 1270–1273,

2013.

140



[120] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,” Parallel

and Distributed Systems, IEEE Transactions on, vol. 25, no. 6, pp. 1543–1552,

2014.

[121] R. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded asynchronous graph

traversal for in-memory and semi-external memory,” in Proceedings of the In-

ternational Conference for High Performance Computing, Networking, Storage

and Analysis (SC). IEEE Computer Society, 2010, pp. 1–11.

[122] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient parallel

gpu methods for single-source shortest paths,” in 28th International Symposium

on Parallel & Distributed Processing (IPDPS). IEEE, 2014, pp. 349–359.

[123] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck, “Phast:

Hardware-accelerated shortest path trees,” Journal of Parallel and Distributed

Computing, vol. 73, no. 7, pp. 940–952, 2013.

[124] E. Solomonik, A. Buluc, and J. Demmel, “Minimizing communication in all-

pairs shortest paths,” in 27th International Symposium on Parallel & Dis-

tributed Processing (IPDPS). IEEE, 2013, pp. 548–559.

[125] P. N. Klein, “Multiple-source shortest paths in planar graphs,” in SODA, vol. 5,

2005, pp. 146–155.

[126] S. Cabello, E. W. Chambers, and J. Erickson, “Multiple-source shortest paths in

embedded graphs,” SIAM Journal on Computing, vol. 42, no. 4, pp. 1542–1571,

2013.

[127] C.-L. Yang, H.-W. Tseng, C.-C. Ho, and J.-L. Wu, “Software-controlled cache

architecture for energy efficiency,” Transactions on Circuits and Systems for

Video Technology, vol. 15, no. 5, pp. 634–644, 2005.

[128] P.-H. Wang, Y.-M. Chen, C.-L. Yang, and Y.-J. Cheng, “A predictive shutdown

technique for gpu shader processors,” Computer Architecture Letters, 2009.

141



[129] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-free irregular computations

on gpus,” in GPGPU, 2013.

[130] D. Merrill and A. Grimshaw, “Parallel scan for stream architectures,” UVA,

Tech. Rep., 2009.

[131] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix sum (scan) with

cuda,” GPU gems, 2007.

[132] E. G. Boman, K. D. Devine, and S. Rajamanickam, “Scalable matrix compu-

tations on large scale-free graphs using 2d graph partitioning,” in Proceedings

of the Conference on High Performance Computing, Networking, Storage and

Analysis (SC), 2013.

[133] Intel Inc., “Product brief intel xeon processor e7-8800/4800/2800 v2 product

families,” 2014.

[134] Intel Inc., “Hpc code modernization workshop at lrz,” 2015.

[135] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Practical Recom-

mendations on Crawling Online Social Networks,” JSAC, 2011.

[136] The University of Florida: Sparse Matrix Collection, “http://www.cise.ufl.edu/

research/sparse/matrices/.”

[137] SNAP: Stanford Large Network Dataset Collection., “http://snap.stanford.

edu/data/.”

[138] GTgraph: A suite of synthetic random graph generators, “http://www.cse.psu.

edu/∼madduri/software/GTgraph/.”

[139] Z. Fu, M. Personick, and B. Thompson, “Mapgraph: A high level api for fast

development of high performance graph analytics on gpus,” in Proceedings of

Workshop on GRAph Data management Experiences and Systems. ACM, 2014,

pp. 1–6.

142



[140] GraphBIG, “https://github.com/graphbig/graphBIG.”

[141] S. Bressan, A. Cuzzocrea, P. Karras, X. Lu, and S. H. Nobari, “An effective and

efficient parallel approach for random graph generation over gpus,” Journal of

Parallel and Distributed Computing, vol. 73, no. 3, pp. 303–316, 2013.

[142] B. R. Gaster and L. Howes, “Can gpgpu programming be liberated from the

data-parallel bottleneck?” Computer, 2012.

[143] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “Cusha: vertex-centric

graph processing on gpus,” in Proceedings of the 23rd international symposium

on High-performance parallel and distributed computing. ACM, 2014, pp. 239–

252.

[144] M. Wahib and N. Maruyama, “Scalable kernel fusion for memory-bound gpu

applications,” in Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis. IEEE Press, 2014.

[145] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski, “Pregel: a system for large-scale graph processing,” in Proceed-

ings of the 2010 ACM SIGMOD International Conference on Management of

data. ACM, 2010, pp. 135–146.

[146] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,

“Graphlab: A new framework for parallel machine learning,” 2010.

[147] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: large-scale graph computa-

tion on just a pc,” in Proceedings of the 10th USENIX conference on Operating

Systems Design and Implementation. USENIX Association, 2012, pp. 31–46.

[148] X. Zhu, W. Han, and W. Chen, “Gridgraph: Large-scale graph processing

on a single machine using 2-level hierarchical partitioning,” in 2015 USENIX

Annual Technical Conference (USENIX ATC 15). USENIX Association, 2015,

pp. 375–386.

143



[149] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu, “Tur-

bograph: a fast parallel graph engine handling billion-scale graphs in a single

pc,” in Proceedings of international conference on Knowledge discovery and data

mining (SIGKDD), 2013, pp. 77–85.

[150] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a memory

cloud,” in Proceedings of International Conference on Management of Data

(SIGMOD), 2013, pp. 505–516.

[151] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric graph pro-

cessing using streaming partitions,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles. ACM, 2013, pp. 472–488.

[152] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: a dsl for easy

and efficient graph analysis,” in Proceedings of the seventeenth international

conference on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), vol. 40, no. 1, 2012, pp. 349–362.

[153] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel, “Chaos: Scale-out

graph processing from secondary storage,” in Proceedings of the 25th Symposium

on Operating Systems Principles. ACM, 2015, pp. 410–424.

[154] K. Wang and Z. Su, “Graphq: Graph query processing with abstraction

refinement-scalable and programmable analytics over very large graphs on a

single pc.”

[155] D. Li, “Facilitating emerging applications on many-core processors,” Ph.D. dis-

sertation, University of Missouri–Columbia, 2016.

[156] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency

of deep convolutional neural networks on cpus and gpus,” in International

Conferences on Big Data and Cloud Computing (BDCloud), Social Comput-

ing and Networking (SocialCom), Sustainable Computing and Communications

(SustainCom)(BDCloud-SocialCom-SustainCom), 2016.

144



[157] D. Li, S. Chakradhar, and M. Becchi, “Grapid: A compilation and runtime

framework for rapid prototyping of graph applications on many-core proces-

sors,” in 20th International Conference on Parallel and Distributed Systems

(ICPADS), 2014.

[158] H. Wu, D. Li, and M. Becchi, “Compiler-assisted workload consolidation for

efficient dynamic parallelism on gpu,” in International Parallel and Distributed

Processing Symposium, 2016.

[159] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From

think like a vertex to think like a graph,” Proceedings of the VLDB Endowment,

2013.

[160] S. Xiao and W.-c. Feng, “Inter-block gpu communication via fast barrier syn-

chronization,” in International Symposium on Parallel & Distributed Processing

(IPDPS), 2010, pp. 1–12.

[161] S. Yan, G. Long, and Y. Zhang, “Streamscan: fast scan algorithms for gpus

without global barrier synchronization,” in PPoPP, 2013.

[162] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in

Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[163] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of

a tensor processing unit,” arXiv preprint arXiv:1704.04760, 2017.

[164] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Practical recommen-

dations on crawling online social networks,” IEEE Journal on Selected Areas in

Communications, 2011.

[165] European Open Stream Map, “http://download.geofabrik.de/europe-latest.

osm.bz2,.”

145



[166] NVIDIA Tesla P100 GPU Accelerator, “https://images.nvidia.com/content/

tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf.”

[167] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama, C. Yuan,

W. Liu, A. T. Riffel et al., “Gunrock: Gpu graph analytics,” arXiv preprint

arXiv:1701.01170, 2017.

[168] T. Coffman, S. Greenblatt, and S. Marcus, “Graph-based technologies for in-

telligence analysis,” Communications of the ACM, 2004.

[169] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, “Lethality and cen-

trality in protein networks,” Nature, 2001.

[170] A. Del Sol, H. Fujihashi, and P. O’Meara, “Topology of small-world networks

of protein-protein complex structures,” Bioinformatics, 2005.

[171] C. Doerr and N. Blenn, “Metric convergence in social network sampling,” in

Proceedings of the 5th ACM workshop on HotPlanet, 2013.

[172] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen,

and E. Chen, “Chronos: A graph engine for temporal graph analysis,” in Pro-

ceedings of the european conference on Computer systems (Eurosys), 2014.

[173] Y. Ji, Q. Li, Y. He, and D. Guo, “Botcatch: leveraging signature and behavior

for bot detection,” Security and Communication Networks, vol. 8, no. 6, pp.

952–969, 2015.

[174] Y. Ji, Y. He, D. Zhu, Q. Li, and D. Guo, “A mulitiprocess mechanism of evading

behavior-based bot detection approaches.” in ISPEC.

[175] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboul-

naga, “Arabesque: a system for distributed graph mining,” in Proceedings of the

25th Symposium on Operating Systems Principles. ACM, 2015, pp. 425–440.

146



[176] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph

computation and partitioning on skewed graphs,” in Proceedings of the Tenth

European Conference on Computer Systems, 2015.

[177] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi,

“Naiad: A timely dataflow system,” in Proceedings of the Twenty-Fourth Sym-

posium on Operating Systems Principles (SOSP), 2013.

[178] K. Vora, G. Xu, and R. Gupta, “Load the edges you need: A generic i/o

optimization for disk-based graph processing,” in USENIX Annual Technical

Conference (ATC), 2016.

[179] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent operat-

ing system support for superpages,” in Proceedings of the 5th symposium on

Operating systems design and implementation (OSDI), 2002.

[180] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou,

F. Zhao, and E. Chen, “Kineograph: Faking the pulse of a fast-changing and

connected world,” in Proceedings of the european conference on Computer Sys-

tems (Eurosys), 2012.

[181] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,

“Graphx: Graph processing in a distributed dataflow framework,” in Proceed-

ings of the USENIX conference on Operating Systems Design and Implementa-

tion (OSDI), 2014.

[182] P. Kumar and H. H. Huang, “G-store: High-performance graph store for trillion-

edge processing,” in International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC), 2016.

[183] Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen, “Joint latency and cost

optimization for erasurecoded data center storage,” ACM SIGMETRICS Per-

formance Evaluation Review, vol. 42, no. 2, pp. 3–14, 2014.

147



[184] J. Chhugani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast and efficient

graph traversal algorithm for cpus: Maximizing single-node efficiency,” in 26th

International Parallel & Distributed Processing Symposium (IPDPS). IEEE,

2012.

[185] A. Buluç and K. Madduri, “Parallel breadth-first search on distributed mem-

ory systems,” in Proceedings of International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), 2011.

[186] D. Bovet and M. Cesati, Understanding The Linux Kernel. Oreilly & Associates

Inc, 2005.

[187] L. Cui, J. Li, B. Li, J. Huai, C. Hu, T. Wo, H. Al-Aqrabi, and L. Liu, “Vm-

scatter: Migrate virtual machines to many hosts,” in ACM SIGPLAN Notices,

vol. 48, no. 7. ACM, 2013, pp. 63–72.

[188] L. Cui, B. Li, Y. Zhang, and J. Li, “Hotsnap: A hot distributed snapshot system

for virtual machine cluster.” in LISA, 2013, pp. 59–74.

[189] L. Cui, J. Li, T. Wo, B. Li, R. Yang, Y. Cao, and J. Huai, “Hotrestore: A fast

restore system for virtual machine cluster.” in LISA, 2014, pp. 1–16.

[190] L. Cui, Z. Hao, Y. Peng, and X. Yun, “Piccolo: A fast and efficient rollback

system for virtual machine clusters,” IEEE Transactions on Parallel and Dis-

tributed Systems, 2017.

[191] L. Cui, T. Wo, B. Li, J. Li, B. Shi, and J. Huai, “Pars: A page-aware replication

system for efficiently storing virtual machine snapshots,” in ACM SIGPLAN

Notices, vol. 50, no. 7. ACM, 2015, pp. 215–228.

[192] J. Li, H. Liu, L. Cui, B. Li, and T. Wo, “irow: An efficient live snapshot system

for virtual machine disk,” in 18th International Conference on Parallel and

Distributed Systems (ICPADS), 2012, pp. 376–383.

148



[193] Friendster Network Dataset – KONECT, “http://konect.uni-koblenz.de/

networks/friendster,” 2016.

[194] Samsung 850 EVO SSD, “http://www.samsung.com/semiconductor/minisite/

ssd/product/consumer/850evo.html,” 2015.

[195] Fixing asynchronous I/O, again, “https://lwn.net/Articles/671649/,” 2016.

[196] Performance Issues with Transparent Huge Pages (THP), “https://blogs.oracle.

com/linux/entry/performance issues with transparent huge,” 2013.

[197] Transparent huge pages in 2.6.38, “http://lwn.net/Articles/423584/,” 2011.

[198] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and L. Zhou,

“Gram: Scaling graph computation to the trillions,” in Proceedings of the Sixth

Symposium on Cloud Computing (SoCC), 2015.

[199] X. Ding, K. Wang, and X. Zhang, “Ulcc: A user-level facility for optimizing

shared cache performance on multicores,” in Proceedings of the SIGPLAN sym-

posium on Principles and practice of parallel programming (PPoPP), 2011.

[200] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page coloring-based

multicore cache management,” in Proceedings of the European conference on

Computer systems (Eurosys), 2009.

[201] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th inter-

national conference on World Wide Web (WWW), 2002.

[202] A. E. Sariyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and Ü. V. Çatalyürek,

“Streaming algorithms for k-core decomposition,” Proceedings of the VLDB

Endowment, 2013.

[203] Clueweb dataset from WebGraph, “http://law.di.unimi.it/webdata/

clueweb12/,” 2012.

[204] EU dataset from WebGraph, “http://law.di.unimi.it/webdata/eu-2015/,” 2015.

149



[205] Gsh dataset from WebGraph, “http://law.di.unimi.it/webdata/gsh-2015/,”

2015.

[206] UK dataset in WebGraph, “http://law.di.unimi.it/webdata/uk-2014/,” 2014.

[207] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propagation: A

multiresolution coordinate-free ordering for compressing social networks,” in

Proceedings of the 20th international conference on World Wide Web (WWW),

2011.

[208] P. Boldi, A. Marino, M. Santini, and S. Vigna, “BUbiNG: Massive crawling for

the masses,” in Proceedings of the Companion Publication of the 23rd Interna-

tional Conference on World Wide Web (WWW), 2014.

[209] Timely Dataflow Blog, “https://github.com/frankmcsherry/timely-dataflow,”

2016.

[210] UMASS Trace Repository, “http://traces.cs.umass.edu/,” 2016.

[211] Y. Wang, S. Baxter, and J. D. Owens, “Mini-gunrock: A lightweight graph

analytics framework on the GPU,” in Graph Algorithms Building Blocks, ser.

GABB 2017, May 2017. [Online]. Available: https://escholarship.org/uc/item/

5wm061tr

[212] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-GPU

graph analytics,” in Proceedings of the 31st IEEE International Parallel and

Distributed Processing Symposium, ser. IPDPS 2017, May/Jun. 2017. [Online].

Available: http://escholarship.org/uc/item/39r145g1

[213] DARPA Graph Challenge, “https://graphchallenge.mit.edu/darpa-hive.”

150


