Catalytic Hydrogen Production

Thermal Splitting of Water at Low Temperatures Using Nano-Structured Cobalt

Key Features:
- Efficient generation of hydrogen to power fuel cells/electric vehicles/etc.
- Safe, on-demand production eliminating the need for hydrogen storage
- Clean fuel with no greenhouse gas emissions when hydrogen produced by renewables

David K. Ryan, Ph.D.
Department of Chemistry
University of Massachusetts Lowell
The Hydrogen Economy

Delivering energy with hydrogen

Advantages
• Clean → H₂O
• Efficient → Up to 85%
• Renewable
• No Greenhouse Gases
• Existing Technologies

Disadvantages
• Not a Source of Energy
• Expensive to Produce
• Difficult to Store
• Highly Flammable Gas
• Infrastructure Needed

Catalytic Hydrogen Technology solves these problems
SEM Images of Synthesized Nano-Structured Cobalt Particles
Catalytic Hydrogen Technology

- Batch reactors for \(\text{H}_2 \) generation

![Diagram of batch reactor](image)
Catalytic Hydrogen Technology

\[Co\ (s) + CO_2(g) + H_2O(l) \rightarrow CoCO_3(s) + H_2(g) \]

\[2\ CoCO_3(s) + H_2O(l) \rightarrow Co_2O_3(s) + H_2(g) + 2\ CO_2(g) \]

- Process is catalytic in CO\textsubscript{2}
- Uses only Water, CO\textsubscript{2} and Cobalt at basic pH
- Cobalt regenerated by several methods
- Hydrogen production easily controlled (T & P)
- Safe, clean, efficient Hydrogen production
Next Steps

• Continuous H₂ Generator
• Optimize & Improve Yield (currently 30 %)
• Couple with fuel cell for prototype system
• Acquire additional funds for tech development
• Secure utility patent/PCT
 – Provisional patent filed March 20, 2017
 “Catalytic Hydrogen Production”
 (Docket No.: SLW 4724.011PRV, UML 2017-006)