ABSTRACT

The dynamic response of structural systems commonly involves multipleDOF vibrations. Often, the approach to understanding the nature ofDOF vibrations is the study of isolated systems. However, the approach of these systems using higher order vibration equations or contact equations causes the natural modes of the system to become highly nonlinear. In this work, the Author developed a nonlinear model reduction technique to reduce the model order and improve the computational efficiency of the approach.

This technique is demonstrated using a real-world application, and the results are compared to the full-order model. The full-order model is used to verify the accuracy of the technique. The technique is shown to be effective in reducing the model order while maintaining the accuracy of the results. This technique can be useful in various applications where computational efficiency is a concern.
Page setup – 56 x 42 (width of roll paper)

HP designjet 500 42

Properties
Set up custom 56x42 inch size
Set Landscape and Rotate by 90 degrees

Select <edit paper list>
Enter size 56x42 as shown

Scale to Fit
Select Custom 56x42