

PHD DISSERTATION – MOHAMAD EYDANI ASL

Subcomponent Testing of Wind Turbine Blades using Scale Models

The mechanical behavior of new materials for wind turbine blades is initially characterized by using coupon testing and finally by full-scale blade testing. The coupon testing is not always representative of performance of the new materials, and full-scale blade testing is time consuming and very expensive. To bridge the large gap between coupon testing and a full-scale test, subcomponent testing is proposed as a cost-effective alternative. To design a meaningful scaled-down subcomponent emulating the structural conditions experienced in the full-scale component, it is proposed that similitude theory can be applied to the I-beam structure of a wind turbine blade involving spar caps and the shear web, to design scaled-down models. Applicability of similitude theory in design of scaled-down composite structures is then investigated by manufacturing and testing the designed I-beams.