Industry Modeling/Simulation Gaps

September 6th, 2011

Mark Higgins
Wind and Water Power Program
US Department of Energy
Turbine Modeling Challenges

• State-of-the-Art Tools Have Difficulty Predicting Turbine Rotor Aerodynamics
 - Linear Aerodynamics used extensively in integrated system design
 - Aeroelastic coupling with complex 3-D flow field is critical to performance estimate and cost-effective design
 - Advanced Computational Aero-Acoustics Prediction (CAA)
 - Required physics include separation, dynamic stall, blade loading, and acoustic emissions; sub-chord dimensional scale

• Advanced Structural Rotor Modeling
 - Simple reduced-order models, e.g., 3-DOF linear modal blade models are extensively used by industry
 - Geometrically nonlinear shell and reduced-order beam models for highly flexible blades needed for aeroelastic tailoring
 - Must include material-failure models, nonlinear buckling, uncertainty quantification, fully coupled fluid-structure interaction

• Integrated System Dynamics Simulation Modeling for both Load & Performance Prediction
 - Fully coupled FEM models capturing rotor, tower, platform and mooring dynamic behavior including non-linear response
 - Supporting Deep Water Offshore Platform Design

Fully Coupled Multi Array Simulations with Fidelity and Scales from Atmospheric Inflow to Blade Boundary Layer
Advanced Coupled Aero-elastic Hydrodynamics Model of an Offshore Floating Wind Turbine

- NREL 5 MW Turbine Used as Baseline
 - Adopted as an international standard for comparison

- Concatenation of Reduced-Order Models:
 - Linear modal blade & tower
 - Linear wave dynamics
 - Homogeneous turbulence
 - Linear aerodynamics (BEM)
 - Platform treated as rigid body
 - Quasi-static mooring
 - Integrated state space and PID control modeling

- Existing Capability
 - Lacks Fully Coupled Inflow, Wake and Wind/Wave Physics for Multi-Array Modeling
 - Not Well Suited for Highly Flexible Blades, Examination of Failure Modes, Non-Linear Coupled Response

Jason Jonkman; 2007
Wind Energy Fundamental Science Issues Requiring HPC

HPC Code Development for Predictive, Rational Design and Operation Supporting High Penetration Wind Energy

- **Wind & Solar Resource Assessment as a Strategic National Energy Resource**
 - Guide the Strategic Development & Deployment of Future Infrastructure – Generation & Transmission

- **Weather Driven Energy Forecast Models - Coupled Wind & Solar**
 - Integrated Monitoring, Forecast, Generation, Load Flow & Operational Dispatch

- **Quantify Potential Effects of High Penetration Scenarios**
 - Climate change Sensitivities
 - Macro & Micro Climatology Impacts
 - Insure against trading carbon alleviation for unknown consequences

- **Characterize Inflow and Outflow Resource**
 - Boundary Layer Processes, Stability, Marine & Nocturnal Formation
 - Atmospheric turbulence
 - Flow separation in complex terrain
 - Air/Sea Boundary Conditions & Wave Interaction
 - Inter & Intra Array Wake Effects

- **Coupled Physics Models Inflow / Wind Plant Interaction / Grid Response**
 - Energy production optimization and grid integration
 - Wind Plant Operation & Control Strategy Development

- **Establish the Design Criteria for Future Turbine & Plant Innovation -**
 - Individual blades and gearboxes, materials.
 - Multi-turbine arrays.
 - Mesoscale atmospheric models.
 - Wind/Wave models.
 - Inter/intra plant dynamics

Classic Coupled Multi-Scale, Multi-Physics Problems

Repower 5MW Demonstration at Beatrice Four-pile jacket