Hung Phan

Hung M Phan

Associate Professor, Graduate Coordinator

College
College of Sciences
Department
Mathematical Science
Office
Southwick 303H
Links
Website

Expertise

Optimization, Mathematical Programming, Variational Analysis

Research Interests

Mathematical Optimization, Operations Research, Variational Analysis, Mathematical Programming

Education

  • Ph D: Mathematics, (2011), Wayne State University

Selected Publications

  • Bartz, S., Campoy, R., Phan, H. (2020). Demiclosedness principles for generalized nonexpansive mappings. Journal of Optimization Theory and Applications , 186(3) 759-778.
  • Dao, M.N., Phan, H. (2020). Computing the resolvent of the sum of operators with application to best approximation problems. Optimization Letters, 14 1193-1205.
  • Bartz, S., Bauschke, H.H., Phan, H., Wang, X. (2019). Multi-marginal maximal monotonicity and convex analysis. Mathematical Programming, https://doi.org/10.1007/s10107-019-01433-9.
  • Dao, M.N., Phan, H. (2019). Adaptive Douglas-Rachford splitting algorithm for the sum of two operators. SIAM Journal on Optimization, 29(4) 2697-2724.
  • Koch, V.R., Phan, H. (2019). Optimization of triangular networks with spatial constraints. Optimization Methods and Software, https://doi.org/10.1080/10556788.2019.1604703.
  • Dao, M.N., Phan, H. (2019). Linear convergence of projection algorithms. Mathematics of Operations Research, 44(2) 715-738.
  • Nam, N., Phan, H., Wang, B. (2019). Bornological coderivative and subdifferential calculus in smooth Banach spaces. Set-Valued and Variational Analysis, 27(4) 971-993.
  • Bello-Cruz, J., Diaz-Millan, R., Phan, H. (2019). Conditional extragradient algorithms for variational inequalities. Pacific Journal of Optimization, 15(3) 331-357.
  • Dao, M.N., Phan, H. (2018). Linear convergence of the generalized Douglas-Rachford algorithm for feasibility problems. Journal of Global Optimization, 72(3) 443-474.
  • Phan, H. (2016). Linear convergence of the Douglas–Rachford method for two closed sets. Optimization, 65(2) 369–385.
  • Bauschke, H.H., Dao, M.N., Noll, D., Phan, H. (2016). On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces. Journal of Global Optimization, 65(2) 329–349.
  • Bauschke, H.H., Lucet, Y., Phan, H. (2016). On the convexity of piecewise-defined functions. ESAIM: Control, Optimisation and Calculus of Variations, 22(3) 728–742.
  • Bausche, H., Bello Cruz, J., Nghia, T., Phan, H., Wang, X. (2016). Optimal rates of convergence of matrices with applications. Numerical Algorithms, 73(1) 33-76.
  • Bauschke, H.H., Dao, M.N., Noll, D., Phan, H. (2016). Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study. Journal of Convex Analysis, 23(1) 237-261.
  • Bausche, H., Koch, V., Phan, H. (2016). Stadium norm and Douglas-Rachford splitting: a new approach to road design optimization. 64 201-218.
  • Bauschke, H.H., Noll, D., Phan, H. (2015). Linear and strong convergence of algorithms involving averaged nonexpansive operators. Journal of Mathematical Analysis and Applications, 421(1) 1–20.
  • Bauschke, H.H., Luke, D.R., Phan, H., Wang, X. (2014). Restricted normal cones and sparsity optimization with affine constraints. Foundations of Computational Mathematics, 14(1) 63–83.
  • Bauschke, H.H., Phan, H., Wang, X. (2014). The Method of Alternating Relaxed Projections for two nonconvex sets. Vietnam Journal of Mathematics, 42 421-450 .
  • Bauschke, H.H., Bello-Cruz, J., Nghia, T., Phan, H., Wang, X. (2014). The rate of linear convergence of the Douglas-Rachford algorithm for subspaces is the cosine of the Friedrichs angle. Journal of Approximation Theory, 185 63-79.
  • Bauschke, H.H., Luke, D.R., Phan, H., Wang, X. (2013). Restricted normal cones and the method of alternating projections: applications. Set-Valued and Variational Analysis, 21(3) 475–501.
  • Bauschke, H.H., Luke, D.R., Phan, H., Wang, X. (2013). Restricted normal cones and the method of alternating projections: theory. Set-Valued and Variational Analysis, 21(3) 431–473.
  • Hoheisel, T., Kanzow, C., Mordukhovich, B.S., Phan, H. (2012). Generalized Newton’s method based on graphical derivatives. Nonlinear Analysis: Theory, Methods & Applications, 75(3) 1324–1340.
  • Mordukhovich, B.S., Phan, H. (2012). Tangential extremal principles for finite and infinite systems of sets II: applications to semi-infinite and multiobjective optimization. Mathematical programming, 136(1) 31–63.
  • Mordukhovich, B.S., Phan, H. (2012). Tangential extremal principles for finite and infinite systems of sets, I: basic theory. Mathematical programming, 136(1) 3–30.
  • Mordukhovich, B.S., Nam, N.M., Phan, H. (2012). Variational analysis of marginal functions with applications to bilevel programming. Journal of Optimization Theory and Applications, 152(3) 557–586.
  • Mordukhovich, B.S., Phan, H. (2011). Rated extremal principles for finite and infinite systems. Optimization, 60(7) 893–923.

Selected Contracts, Fellowships, Grants and Sponsored Research

  • Optimization in triangular network designs (2018), Sponsored Research - Autodesk, Inc.
    Phan, H.
  • Optimization in triangular network designs (2017), Sponsored Research - Autodesk, Inc.
    Phan, H.