All courses, arranged by program, are listed in the catalog. If you cannot locate a specific course, try our advanced search link. Current class schedules, with posted days and times, may be found on the Registrar's Office website or by logging directly into SiS.


Boundary Layer Meteorology (Formerly 85.501)

Description

This course draws upon the equations of motion in the atmosphere to develop a theoretical understanding of the atmospheric boundary layer. This understanding is compared with real observations taken with the Department's rawinsonde equipment, as well as published data. The emphasis is on blending theory and practice to enhance the student's understanding of the behavior of the atmosphere.

Advanced Synoptic Meteorology (Formerly 85.502)

Description

This course is designed for graduate students who have a strong background in mathematics and physics, but whose meteorology preparation is weak. The basic concepts of weather forecasting and analysis on synoptic scales are covered theoretically as well as in application to case studies and current weather. The coursework encourages the development of three - dimensional visualization techniques and an appreciation of the physics which controls weather systems.

Remote Sensing (Formerly 85.503)

Description

This course is a survey of ground based, balloon, rocket probe, radar and satellite remote sensing techniques. Optical and radio frequency remote sensing techniques are surveyed. The focus is on the determination of physical, chemical and dynamical quantities by remote sensing measurements. The theory is presented used to interpret data obtained by remote sensing techniques. Various inversion methods are discussed used to obtain spatial discrete quantities from line - of - sight observations. Modeling and simulation techniques are described and practiced.

The Climate System (Formerly 85.508)

Description

The main elements of the Climate System are the atmosphere, ocean, biosphere, land surface, and the cryosphere; the primary input of energy is from the Sun. This course examines these elements, the ways in which they interact and how they can be modeled. The Global Energy Budget is examined and both natural and human-caused climate change are considered.

Regional Weather and Climate Modeling (Formerly 85.510)

Description

Mesoscale atmospheric dynamics and regional climate dynamics. Application of regional weather and climate model to regional weather, climate modeling and forecast problems. Multi-scale physical processes, such as mesoscale and convective-scale phenomena, low-level jets, mountain waves and orographic precipitation, land/sea breezes, cyclones etc., will be discussed in order to understand the linkage between regional weather and climate.

Prerequisites

Pre-req: ATMO 2340 Scientific FORTRAN Programming, ATMO 3010 Atmospheric Dynamics and ATMO 4150 Advanced Atmospheric Dynamics I.

Physical Meteorology (Formerly 85.513)

Description

This course explores the essentials of cloud physics, beginning with the basic laws of thermodynamics of both dry and moist atmospheres. Condensation, nucleation, and drop growth are studied in detail at an advanced level.

Atmospheric Structure and Dynamics (Formerly 85.515)

Description

The temperature, pressure and density structure of the atmosphere are reviewed, as well as the chemical composition. Topics include atmospheric and solar radiation, atmospheric heat budget and the hypsometric equation. Dynamics of the atmosphere explores the behavior of fluids on a rotating earth, global circulation, synoptic scale motions, perturbation theory of wave motions. Elements of climatic change and the effects of anthropogenic emissions on climate and weather will also be discussed.

Mesoscale Atmospheric Dynamics (Formerly 85.516)

Description

This course is designed for students to apply atmospheric dynamics and physical analysis techniques to mesoscale and convective-scale phenomena, including mesoscale convective systems, severe thunderstorms, tornadoes, dry lines, low-level jets, mountain waves and orographic precipitation, land/sea breezes, boundary layer rolls, and hurricanes. Emphasis will be given to the physical understanding of these processes instead of forecasting.

Prerequisites

Pre-req: ATMO 3010 Atmospheric Thermodynamics, and ATMO 4150 Advanced Atmospheric Dynamics.

Forecasting and Synoptic Techniques I (Formerly 85.518)

Description

This is the first of a two-course sequence that provides graduate students a combined theoretical and applied understanding of synoptic-scale meteorology, with an emphasis on forecasting applications. The first course introduces the concepts of vorticity advection and the quasi-geostrophic approximation, and applies them synoptic-scale cyclones, including nor'easters. The graduate students will learn to use Gempak graphics and will be introduced to the National Weather Service Weather Event Simulator, a combined hardware and software package that simulates the NWS forecast environment.

Forecasting and Synoptic Techniques II (Formerly 85.519)

Description

This is the second of a two-course sequence that provides graduate students a combined theoretical and applied understanding of synoptic-scale meteorology, with an emphasis on forecasting applications. This second course builds on the content of the first, extending quasi-geostrophic approximation to Q-vectors and isentropic potential vorticity. The National Weather Service Weather Event Simulator, a combined hardware and software package that stimulates the NWS forecast environment will be used to study case studies that have been programmed for the Simulator. Together with 85.518, this two-course sequence satisfies the NWS certification requirements for analysis and prediction of weather systems.

Air Pollution Control (Formerly 85.523)

Description

This course describes air pollutants, their characterization, ambient concentrations, effects on human health and the ecology, and the environmental laws and regulations that set standards on emission rates and ambient concentrations. The basics of air pollutant dispersion and transport are also covered. The main focus of the course is on emission control technologies for particulate matter, carbon monoxide, sulfur oxides, nitrogen oxides, organic and inorganic toxic pollutants. The following technologies are discussed: cyclones, scrubbers, electrostatic precipitators, baghouses, adsorption, absorption and incineration. The automobile and its emission control are reviewed. Alternative methods are also discussed, such as fuel substitution, conservation and efficiency improvement.

Simple Atmospheric Models (Formerly 85.524)

Description

The basic wave types and fundamental dynamics of atmospheric motion are considered through analytical and numerical modeling of the main simplifications (models) of the full equations of motion for the atmosphere. These models are derived by making assumptions that greatly simplify the full equations and which isolate individual wave types and specific physical mechanisms. Together, these models describe the basic aspects of atmospheric motion: the maintenance and structure of the jet stream, the genesis and propagation of synoptic storms, and the forced and internal contributions to seasonal patterns of midlatitude climate variability.

Advanced Forecasting (Formerly 85.529)

Description

This course builds on the student's basic understanding of storm systems and extends their theoretical knowledge to particular weather patterns. Topics include nowcasting, long-range forecasting, snow squalls, sea breeze, and especially deep convection. Particular attention is paid to the structure and development of supercells. Students will also be required to write a special report on a topic assigned by the professor, and present this in class as a special lecture.

Tropical Meteorology (Formerly 85.540)

Description

An introduction to the tropical atmosphere, including tropical climatology, structure and dynamics of easterly waves, tropical cyclones and monsoon circulation's.

Prerequisites

Pre-Req: ENVI.2020 Earth & Env Systems II.

Satellite and Rad Meteorology (Formerly 85.550)

Description

There is currently no description available for this course.

Air Pollution Phenomenology (Formerly 85.571)

Description

The course centers on transport, dispersion and transformation of air pollutants in the atmosphere. Atmospheric structure and dynamics are reviewed. The atmospheric dispersion equation is developed for instantaneous and steady- state releases of pollutants, including the Gaussian Plume Equation for point, line and area sources. The sources and transport of particulate matter are discussed, including haze and visibility impairment. Other topics are photooxidants (ozone), acid deposition, stratospheric ozone depletion and the greenhouse effect.

Meteorology for Teachers (Formerly 85.581)

Description

The purpose of this course is to provide the middle school teacher with: a thorough understanding of several key concepts and processes of meteorology; the ability to effectively present meteorology topics that are appropriate for the middle school science classroom; the tools necessary to develop inquiry based lessons for the classroom.

Directed Study (Formerly 85.591)

Description

There is currently no description available for this course.

Professional Experience Atmospheric Science (Formerly 85.595)

Description

Professional experience with a private of public employer. Written report and supervisor evaluation required.

Special Topics in Meteorology (Formerly 85.641)

Description

There is currently no description available for this course.

Special Topics in Meteorology (Formerly 85.642)

Description

There is currently no description available for this course.

Graduate Research Seminar (Formerly 85.701)

Description

There is currently no description available for this course.

Master's Research (Formerly 85.731)

Description

There is currently no description available for this course.

Graduate Research (Formerly 85.732)

Description

There is currently no description available for this course.

Master's Research in Atmospheric Sciences (Formerly 85.733)

Description

There is currently no description available for this course.

Master's Thesis in Atmospheric Sciences (Formerly 85.743)

Description

There is currently no description available for this course.

Doctoral Dissertation in Atmospheric Sciences (Formerly 85.753)

Description

There is currently no description available for this course.

Continuing Graduate Research (PhD) (Formerly 85.760)

Description

Continuing Graduate Research at the PhD level. May be taken for variable credit.

Continuing Graduate Research (PhD) (Formerly 85.761)

Description

Research on dissertation or other research areas as required by the program and the student's advisor.

PhD Research in Atmospheric Sciences (Formerly 85.763)

Description

There is currently no description available for this course.

Doctoral Dissertation (Formerly 85.765)

Description

There is currently no description available for this course.

Doctoral Dissertation (Formerly 85.768)

Description

There is currently no description available for this course.

Geographic Information Systems (Formerly 87.504)

Description

This course will cover most of the elements of a geographic information system commonly found in basic and mid-level GIS applications. Topics will include file organization, data entry including digitizing and image registration, geocoding, thematic mapping, Structured Query Language (SQL) applications, map algebra, raster operations, interpolative methods, distance mapping, density mapping, cost surfaces, and an introduction to modeling. This course will use the Arcview GIS platform.

Environmental Pollution

Description

This class is designed for graduate students in Environmental, Earth and Atmospheric Sciences, Environmental Engineering, Environmental Chemistry and Biology. The class describes the origin, transport, and transformation of pollutants in the environmental behavior and biological impacts of contaminants. Students also will learn about national and international regulations regards pollutant emissions and technology for control and remediation.

Prerequisites

Pre-req: ENVI.2010 Earth Environmental Systems I, or CHEM.1210 Chemistry I, and CHEM.1220 Chemistry II, or Permission of Instructor.

Methods in Environmental Impact Assessment and Analysis (Formerly 87.520)

Description

This course describes, and illustrates with case studies, environmental evaluation required to implement projects and policies potentially affecting the environment. Methods available to integrate technical impact predictions, prepare Environmental Statements, and make informed decisions regarding environmental effects will be covered. Incorporation of sustainability and permitting with environmental analyses will also be examined.

Energy and Environment (Formerly 87.572)

Description

This course discusses the world and U.S. primary energy resources and consumption, including fossil, nuclear and renewable energy sources. Principles of thermodynamics are reviewed, especially in regard to energy usage efficiency improvement. A significant part of the course is devoted to electricity production, including site visits to fossil and nuclear power plants. The environmental effects are discussed of energy extraction and consumption, such as SOx, NOx and particulate matter emissions, acid deposition, the greenhouse effect, radioactive waste disposal. Also the risks of accidents are discussed in fossil and nuclear fuel usage.

Climate Change in the Classroom (Formerly 87.585)

Description

The course is designed to help teachers from all levels improve their ability to foster student learning about the earth's changing climate. The course addresses the scientific, sociological, and pedagogical dimensions associated with climate change science. How to incorporate climate change into existing curriculum across disciplines is considered.

Paleoclimatology (Formerly 89.501)

Description

This course provides students with an overview of paleoclimatology by examining the use of proxy records, such as marine and lake sediment sequences, ice cores, tree rings, corals and historical data to reconstruct past climatic conditions. Dating methods will be introduced. Throughout, we will critically analyze our understanding of past climates and environments and identify directions for future research. Topics include: abrupt climate change, human evolution and climate, biosphere-climate interactions and paleoclimate modeling.

Quantitative Gemorphology (Formerly 89.502)

Description

This course follows the path of material as it is weathered form bedrock, moved down hillslopes and transported via glaciers and rivers. Emphasis is on 1) quantifying erosion and sediment transport, 2) applying computer-based models and conservation of mass equations to earth surface processes and 3) understanding long-term landform evolution.

Igneous and Metamorphic Petrology (Formerly 89.504)

Description

The origin and evolution of igneous and metamorphic rocks. Emphasis will be on physical and chemical processes, magma transport and crystallization, phase equilibria, development of metamorphic facies, open and closed system behavior, and the development of metamorphic fabric.

Prerequisites

Co-req: 89.506 Igneous and Metamorphic Petrology Laboratory.

Igneous and Metamorphic Petrology Laboratory (Formerly 89.506)

Description

Identification and classification of igneous and metamorphic rocks. Emphasis is on thin section identification and use of rock textures and compositions as guides to petrogenesis.

Prerequisites

Co-req: 89.504 Igneous and Metamorphic Petrology.

Glacial and Pleistocene Geology (Formerly 89.510)

Description

A survey and interpretation of the erosional and depositional effects of glaciation with emphasis on the New England area. Topics include glaciology, glacial geology, and Pleistocene stratigraphy.

Topics in Environmental Geochemistry (Formerly 89.515)

Description

Case-based course dealing with the application of thermodynamics and kinetics, acid-base equilibria, oxidation-reduction reactions, radioactive and stable isotopes, and mineral chemistry to the understanding and solution of environmental problems. Other topics will be considered based on student interest.

Structural Geology (Formerly 89.520)

Description

An analysis of crustal deformation through detailed study of geologic structures with emphasis upon the response of geologic materials to stress and strain. Field techniques, tectonic principles, and geometrical analysis are employed.

Prerequisites

Co-req: GEOL 5200L Structural Geology Laboratory.

Structural Geology Laboratory (Formerly 89.522)

Description

A survey of the graphical techniques used to convert field measurement into the information needed in the construction of geologic maps, cross-sections, and crustal stress-strain histories.

Prerequisites

Co-req: 89.520 Structural Geology.

Regional Hydrogeology (Formerly 89.524)

Description

Concentrating on the storage and steady state flow of ground water at a basin-wide scale, thecourse studies flow nets, fluid potential, and numerical modeling of flow controlled by basingeometry and geology; water movement in the zone of aeration, the interaction of groundwaterwith surface water, the transport and dispersion of contaminants, and the use of modeling forgroundwater management.

Isotopes in Environmental and Geosciences (Formerly 89.531)

Description

The course will show how radioactive and stable isotopes can be used to understand environmental and geological systems. Topics to be covered include radiometric dating using short and long half-life isotopes, radiogenic isotopic tracers, and stable isotopes.

Mass Transit Modeling (Formerly 89.540)

Description

There is currently no description available for this course.

Environmental and Engineering Geology (Formerly 89.341/541)

Description

Fundamentals of geology applied to environmental and engineering problems. Topics include minerals and rocks, soil properties, rock mechanics, active tectonics and earthquake hazards, slope stability and landslides, groundwater, rivers and flood hazards, coastal processes, and site assessment. Student project.

Sedimentation & Stratigraphy (Formerly 89.552)

Description

Principles and processes of sedimentation: erosion, mechanics of transport, diagenesis and lithification, models for sedimentary environments. Development of the stratigraphic record, relative and absolute time, and seismic stratigraphy.

Prerequisites

Co-req: 89.554 Sedimentation and Stratigraphy Laboratory.

Sedimentation and Stratigraphy Laboratory (Formerly 89.554)

Description

Determination of mass properties of sediments with emphasis on mechanical and statistical analysis, identification and description of sedimentary rocks, facies models and stratigraphic cross-sections.

Prerequisites

Co-req: 89.552 Sedimentation and Stratigraphy.

Applied Geophysics (Formerly 89.556)

Description

Application of geophysics to problems in geology and environmental science. Principles and techniques of gravity, magnetic, electrical, and seismic methods. Field projects and surveys.

Advanced Geochemistry (Formerly 89.558)

Description

Application of chemical principles to geological and environmental problems. Topics include abundance and distribution of elements in the earth, Crystal chemistry, stable and radiogenic isotopes, radiogenic dating, isotopic and elemental tracers, water-rock interactions.

Oceanography for Teachers (Formerly 89.585)

Description

This course will introduce students to basic oceanographic principles and processes. Content will be linked to National and State Science Standards. Students will create a number of oceanography-based lessons linked to the standards. Pedagogy will be modeled in relation to teacher instruction and student learning.

Special Topics: Environmental Geoscience (Formerly 89.593)

Description

Student/Instructor selected in-depth study of a specific topic(s) within the Environmental Geosciences of a closely related field.

Professional Experience: Environmental Geoscience (Formerly 89.595)

Description

Professional experience with a private of public employer. Written report and supervisor evaluation required.

Advanced Rocks (Formerly 89.599)

Description

There is currently no description available for this course.

Graduate Seminar Biology (Formerly 89.702)

Description

There is currently no description available for this course.

Master's Research in Environmental Geoscience (Formerly 89.731)

Description

There is currently no description available for this course.

Master's Thesis in Environmental Geoscience (Formerly 89.741)

Description

There is currently no description available for this course.