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I.  SUMMARY  

         Given k cost functions Fi (x) corresponding to k outputs  based on a control vector x, we try to 
simultaneously minimize the costs ( or penalties). If this simultaneous minimization can be achieved with some 
control vector u, we say that “utopia” is attained by u. Usually this is not the case and sub-utopian solution 
vectors x* have been proposed in the literature [ Marler and Arora 2004]. Two well known proposed control 
vectors are the minimax solution   x* = xm and the Pareto optimal x* = xp.   
        xm  minimizes  the function Fm (x)  =   max i=1,2,…k { Fi (x) }   while  xp  is a vector x* for which there is  
 no other vector  y  such that  Fi (y) <   Fi (x*) for i = 1,2,…k and, for at least one  j , Fj (y) <   Fj (x*). 
 
       In general these two control vectors may differ: For instance consider F1 (x)  =  1-x  x< 0 , 1  0< x < 1,  
and x  x > 1 . Let F2 (x)   =  10-2   +   10-2 ( x – 2 )2 . Then any x in [0,1) is minimax but not Pareto optimal while  
any x in (1,2]  is Pareto optimal but not minimax. 1 is both minimax and Pareto optimal. 
        

      Another proposed control vector is the Bayes (or weighted) xb, which minimizes i=1,..k   wi  Fi (x)  for some 
probabilities  wi  on {1,2,…k}. If each wi  >  0, then it is easily proved that xb  is Pareto optimal. 
 
       If however we assume that the control space is closed and convex and that each function is convex and has   
been  rescaled  by dividing by its minimum ( a completely natural assumption for comparing relative costs  
(penalties)), the relationship between minimax and Pareto optimal and their properties becomes more interesting:  
From our theorem in Section II we will see that a minimax x* is always Pareto optimal for k=2  and, for arbitrary  
k, that a ( at least) “binary equi-cost state “ exists at a minimax x* in the non utopian case- namely that at least two  
of the Fi ‘s attain the minimax value at x* ,  for any neighborhood of x* two of those attaining the minmax value  
at x* take a larger value at some (different) point in the neighborhood while all of those attaining this minimax  
value at x* take smaller values at some (different) points in the neighborhood, and finally that one cannot   
guarantee  the existence of three functions taking the minimax value. These assertions are , however, false if we  
weaken the assumption of convexity to unimodality. (But they are true for strictly unimodal functions , for which  
we give a  different proof in Sec. III. Our proposed control vector, however, assumes convexity of  the functions.) 
 
        Based on the appeal of the binary equi-cost condition we propose to apply minimaxity to two functions  
derived from the original k (since  we can always identify the two “participants “ in the equi-cost state). In light of  
the previous discussion one of them might  be G2 (x) = Fm (x)  /  m     where m is the minimum of  Fm (x) . (Note 
that Fm is convex since each Fi is convex.) As weighted costs are often considered as important by users the other  

is  G1 (x) = (1/b) i=1,..k   wi  Fi (x) where wi  are  probabilities assigned to the various control functions and b is 

the minimum value of the weighted sum  i=1,..k   wi  Fi (x). Hence the near Bayes near minimax solution x nbnm   
is that which minimizes max{G1(x),G2(x)}. In non-utopian cases this has the equilibrium properties described  
above and, if all wi  >  0, the solution xnbnm is  Pareto optimal but not minimax for the original k function problem. 
We note that approaches optimizing weighted sums of the form  G2 (x) +  G1 (x) have been proposed in the  



literature where  the parameters  are user specified.  The NBNM solution can be reduced to this form but   
are unpredictable and solving nbnm directly, as we pose it, is often an unconstrained convex programming 
problem.   
	
	II.		MATHEMATICAL	PROOFS	OF	ASSERTIONS		
	
	
		Theorem:			For	I	=1,2,…k,	let	Fi	(x)	be	convex	positive	real	valued	functions	on	a	closed	convex	subset	of	
d‐dimensional	Euclidean	space	with	each	Fi	having	a	minimum	value	of	1.	Assume	no	x		
simultaneously		minimizes	all	control	functions	(	utopia	is	not	attained).	Then	at	any	minimax	x*	(which		
minimizes		Fm(x)	)		
																																			a.	At	least	two	Fi	‘s	attain	the	minimax	value	Fm(x*)	at	x*.	Consider	all	Fi	for	which	the	
																																								minimax	value	is	attained	at	x*.	
																												
																																									
	
																																			b.	Given	any	convex	neighborhood	N	of	x*:		All	functions	in	a.	take	on	smaller	values		
																																							than		Fm(x*)	at	some	(possibly	different	)	points	in	the	neighborhood	N.	At	least	two	
																																							of	the	functions	in	a.	take	a	larger	value		than		Fm(x*)		at	some	(possibly	different)		
																																							point	in	the	neighborhood	N.	
	
																		proof:		Suppose	only	one	function,	say	F1,		attains	the	minimax	value	at	x*.	Since	F1	attains	its	
minimum	value	1	at	say	x1,		F1	(	x1	+	(1‐)x*	)	<		Fm(x*)			for	0	<		<	1.	For	sufficiently	small		,		
Fl	(	x1	+	(1‐)x*	)	<		Fm(x*)		for	l	=	2,3,…	k.	Hence		Fm(x*)	is	not	the	minimax	value,	a	clear	contradiction.			
So	a.	holds.	(Example	1.	below	shows	that	we	cannot	always	find	three	or	more	such	functions.)	
	
																						Repeating	the	above	argument	for	any	Fi	in	a.	(	with	Fi(xi)	=	1	),	we	see	that	Fi	(	ixi	+	(1‐i)x*	)	
	<		Fm(x*)			for		a	sufficiently	small	i	such	that		ixi	+	(1‐i)x*	lies	in	N.		Now	suppose			Fi	(	x	)		<			Fm(x*)			
for	all	Fi	attaining	Fm(x*)	at	x*	and	all	x	in	N.			Let	x**	be	the	sample	mean		of	the	points		xi	+	(1‐i)x*	.		
By	the	convexity	of	N,		x**	lies	in	N		and	each		Fi	(	x	**)		<			Fm(x*)	.	By	taking	the	i sufficiently	small	we	can	
	ensure	that	x**	is	sufficiently	close	to	x*	that	Fj	(x**	)	<					Fm(x*)		for	those	Fj	not	attaining	the	minimax		
value	in	a.		But	then	Fm(x*)	is	not	the	minimax	value,	a	clear	contradiction.		Hence	at	least	one		such	Fi	takes	
a	bigger	value	than	Fm	(x*)	at	some	point	in	N.	Suppose	now	that	there	is	only	one	such	Fi	,	say		Fl	.	Now		
repeat	the	latter	construction	except	replace	the	sample	mean	by	a	proper	convex	combination		x**	of		the	
points		ixi	+	(1‐i)x*		that	puts	sufficient	weight	on	the	point		lxl	+	(1‐l)x*	to	ensure	that		Fl	(x**	)	<						
Fm(x*)	.		As	before	Fm(x*)	is	not	the	minimax	value,	a	clear	contradiction.	So	we	must	have	at	least	two	such	
functions	taking	larger	values	in	N.		Q.E.D.	
																															(	Example	2.	below	demonstrates	that	the	theorem	is	false	if	we	weaken	the	convexity		
assumption	to	that	of	unimodal	functions.)	
	
	
Corollary	I:			For	k	=	2,	any	minimax	x*	is	Pareto	optimal	assuming	each	Fi	is	convex	with	minimum	1.	
	
																		proof:	If	utopia	is	attained	then	x*	is	clearly	Pareto	optimal	since	both	functions	equal	1	at	x*.		
Otherwise	both	take	the	minimax	value		at	x*	by	the	theorem.	Now	if	x*	is	not	Pareto	optimal	then	there		



exists	a	x**	with	say	F1(x**)	<		Fm(x*)		and	F2(x**)	<		Fm(x*).		Since	Fm(x*)	is	the	minimax	value	we	must	
	have	F2(x**)		=		Fm(x*).		Hence	x**	is	also	minimax	but	a.	of	the	theorem	fails	to	hold.	By	contradiction	x*	
	must	be	Pareto	optimal.	Q.E.D.	
(	Example	3.	below		shows	that		Corollary	I	is	false	for	k	=	3.)	
	
	
Corollary	II:	Assuming	each		Fi	is	convex	with	minimum	1	and	all	wi  >  0,		xnbnm is Pareto optimal for the 
 k function problem. 
 
                  proof: if not there is a control vector y for which  Fi (y) <   Fi (x

nbnm) for i = 1,2,…k and, for at least one  
 j , Fj (y) <   Fj (x

nbnm). Since  wj > 0, G1 (y) <  G1 (x
nbnm) . Clearly G2 (y) <   G2 (x

nbnm) and, by the min max property 
 of xnbnm , G2 (y)  =  G2 (x

nbnm). Hence y solves the NBNM problem but a. of the theorem fails to hold, a clear 
contradiction. Q.E.D. 
 
	
Example	1	:	Take	F1	(x)	=	1		,		F2	(x)	=	1	+	(x	‐	1)2	,		and	F3	(x)		=		1	+	(x	+	1)2	.	The	minmax	value	is	2	,	the		
minimax	solution	x*	is	uniquely	0	but	only	F2	and	F3	take	the	value	2	at	0.		
	
	
Example	2:	Take	F1	(x)	=	1	+	x2			and	F2	(x)	=	2	–	x		for	x	<	0,	2	for	0	<	x	<	1,		1	+	(	x	–	2	)2		for		x>	1.	Then		
x	=	.5		is	minimax		but	only	F2	attains	the	minimax	value	at		.5.			
	
	
Example	3:	Take	F1	(x,y)	=	1	+	10‐2	(	y	‐	.1	)2		,		F2	(x,y)	=	1	+	(x	‐	1)2	,		and	F3	(x,y)		=		1	+	(x	+	1)2	.	The		
minmax	value	is	2	,	a	minimax	solution	is		(x*,	y*)	=		(0,0)			but	,	at	(0,	.1),			F1	takes	a	smaller	value	than		
at	(0,0)	while	F2	and	F3	take	the	same	value	as	at	(0,0).	Hence	(0,0)	is	not	Pareto	optimal.	
	
	
	III.	EXTENSION	OF	THEOREM	TO	STRICTLY	UNIMODAL	FUNCTIONS:					
	
								We	use	the	following	definitions	for	unimodality:	A	continuous	function	on	a	closed	convex	set	is		
unimodal	if	there	is	a	point	in	the	domain	such	that	on	the	intersection	of	the	domain	and	any	line	through		
that	point	the	function	decreases	(	not	necessarily	strictly)	and	then	increases	(	not	necessarily	strictly)	
while	achieving	its	minimum	at	the	point.	The	function	is	strictly	unimodal	if	the	latter	increases	and		
decreases	are	both	strict.	
						The	theorem	is		true	for	strictly	unimodal	functions.	Namely,	in	any	neighborhood	of		a	non‐utopian	x*,		
every	function	achieving	the	minimax	value	takes	a	smaller	value	in	the	neighborhood.(	Consider	the		
behavior	of	the	function	on	the	line	through	the	point	minimizing	the	function	and	x*	.)	Hence	the	first		
assertion	in	b.	holds.	Now	clearly,	if	only	one	function	achieved	the	minimax	value	at	x*	then	we	could	
	find	a	smaller	minimax	value	for	some	point	x**	in	the	neighborhood,	which	is	impossible.	So	a.	is	valid.		
								
						The	second	assertion	in	b.	,	finding	two	points	achieving	the	minimax	value	with	larger	values	assumed		
in	the	neighborhood,	requires	a	slightly	different	approach	as	in	the	theorem:		
	
						Let	us	first	assume,	for	some	neighborhood	N	of	x*,	all	functions	F1	,	F2	,	…..	Fs	(	there	are	at	least	two		
such	,	so	s	>		2)	taking	the	minimax	value	at	x*	take	values	less	than	or	equal	the	minimax	value	in	N.	(We		



can	also	assume,	by	making	N	sufficiently			smaller	if	necessary,	that	all	other	functions	Fi		take	smaller		
values	than	the	minimax	value	everywhere	in	N.)	Somewhere	in	N,			F1	takes	a	smaller	value;	in	fact	it	takes		
smaller	values	everywhere	in	a	proper	sub	neighborhood	N’	of	N	but	these	values	may	be	strictly	bounded	
below	by	1.	Now	F2		takes	a	smaller	value	somewhere	in	N’	and	everywhere	in	a	proper	sub	neighborhood		
N’’of	N’	and	these	values	of	F2		can	be	strictly	bounded	below	in	N’’	by	1.	Continuing	the	argument	we		
eventually	find	a	subneighborhood		N*	of	N	where	all	s	functions	take	values	less	than	the	minimax	value		
while	all	other	Fi’s	also	take	smaller	values	in	N*.	This	is	a	clear	contradiction.	
	
						Finally,	we	assume	there	is	only	one	function	such	Fl		above	taking	bigger		values	in	the	N	constructed.	
We	can	still	find	a	point	in	N	where	Fl	takes	a	smaller	value	and	repeat	the	construction	exactly	as	above		
arriving	at	the	same	contradiction.	QED.	


