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Nanocomposites - potential and challenges

— +@} e In 2004 it was predicted that market for
Polymer nanocomposites would grow at a rate of

76% per year

Despite intense research effort there are
to date a modest number of commercial
applications

Microcomposite

¢ Various methods of nanocomposite production — melt mixing of greatest
commercial interest

» Majority of research effort focussed on polymer/clay interface chemistry

» Effect of processing/scale-up has more recently been recognised as a
major factor in commercial success but is not well understood




Why on-line monitoring?

» Degree of clay dispersion depends on
extruder/mixer design and processing
parameters

» Off-line characterisation is time-
consuming and expensive

» Recent investigations into on-line monitoring
solutions (Optical; Fluorescence; IR; Ultrasound;
Dielectric)

sensor responses is not yet well understood

 Effect of degradation, intercalation, exfoliation on

TEM image

Fluorescence Monitoring

Clay is doped with Nile Blue

fluorescent die

» Fluorescence is quenched at high
concentrations and in nano-
confinement

» As exfoliation occurs, die escapes
- emission spectrum evolves with
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» Useful for in-depth evaluation of
mixing — not suitable in production
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Optical Transmission Monitoring

* Presented by Bur et al. Polymer, 46, 10908-10918 (2005)

» Optical probe carries light from source
into the melt;
Reflects off base of die and reflected Rwties
signal is collected by return fibers

» Intensity of reflected signal is measured
by photon counting

Optical probe

» Higher light transmission achieved with the nanocomposites
exhibiting greater extent of exfoliation (analysed by TEM)

|
Effect of changes in screw speed/temp? Effect of 1
degradation? LT ¢
/

Aim here to assess optical transmission and in-line rheology
as suitable tools for process optimisation

Experimental

* Nylon 6 loaded with various mass
fractions of Cloisite 20A at different
processing conditions L ~

| —

e 25mm Single Screw Extruder
instrumented with a slit die for on-line
optical and shear viscosity measurement
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Processing Trials

Single Screw Extrusion (SSE)
e 25mm Killion KTS-100
e 2%; 4%; 6% mass fraction — each run at 40; 65 and 90rpm
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SSE - Off-line Characterisation

2% clay

e Significant decrease in
agglomerates from
40rpm to 90rpm from
x1000 SEM
micrographs

SSE - Off-line Characterisation

XRD results for samples with 2% clay content
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SSE - Off-line Characterisation

2% clay

e Significant decrease in
agglomerates from
40rpm to 90rpm from
x1000 SEM
micrographs

40rpm 90rpm

d-spacing examined by XRD . -
d-spacing of Cloisite 20A = 2.30 nm

Screw Speed

40 rpm 3.09 nm

90 rpm 3.25 nm

Lowest peak height

SSE - Off-line Characterisation

6% clay

» Significant decrease in
agglomerates from
40rpm to 90rpm from
x1000 SEM
micrographs

40rpm 90rpm

d-spacing of Cloisite 20A = 2.30 nm

Screw Speed

d-spacing of 6% clay

sLittle change with screw speed 40 rpm 3.21 nm
slightly higher at 65rpm
90 rpm 3.22 nm

Lowest peak height




SSE On-line results

 Optical Transmission

— sig. changes
between 40 and .
65rpm

» Major changes in
dispersion efficiency?
Supported by XRD

* Viscosity decreases ® FAg+ 6% Clay
on addition of clay ’
but increases with 1000 £
mass fraction 10 Shear Rate (5 100

* Pag
B PAGR+ 2% Clay

Viscosity (Pas)

P&6+ 4% Clay

» Dramatic decrease in viscosity 40 — 65 rpm
* reduction in agglomerates?
» consequence of greater exfoliation?
 degradation?

Molecular Weight Analysis

GPC for determination of M,,

 Slight decrease in Mw of 2% sample *°®

at 65rpm — may be contributing to 570000 17

viscosity changes z
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e Large reduction in Mw of 6%
samples — but not at 65rpm!
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» Two distinct mechanisms — not a




TSE — Off-line Characterisation

SSE 40rpm

>

6%

SSE 90rpm

TSE 90rpm

2, © 2 dy
d-spacing
Cloisite 20A = 2.30 nm 2% 3.37 8135
: 4% 3.22 3.23
Greater peak heights ’
6% 3.06 3.26

TSE — Online Results
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reagglomeration in second
pass through SSE:

Greater degradation

2% TSE before
2nd Pass

» For each mass fraction little
change in light intensity

* 2%- lower light signal than
SSE

2% TSE after 2nd
Pass at 90rpm




TSE — Online Results

In-line rheology
closer to power law
behaviour

+ PAG

* For 2% & 4% (little
change in d-
spacing)

m PAG+ 2% Clay

Viscosity (Pas)

PAG + 4% Clay *
@ PAG + 6% Clay

1000

10 ShearRate (s)

* 6% shows much higher ‘shear thinning’
» Changes in structure at different conditions
» Enhancement of d-spacing from 40rpm to 90rpm

100

Summary of findings

» Reflected light intensity sensitive to agglomerate break-up —
correlates well with XRD and SEM analysis.

Not capable of ‘absolute’ measurement




Viscosity ‘Soft Sensor’ Strategy

Extruder inputs Pressure
N, T1, T2, Tn... jy {20

Viscosity > ‘
. Prediction reszulre | _+>
| model model
depends on
%4 error

material
Low cost indicator of degradation

properties &
machine

Monitoring and Control of Thermal Stability

» Temperature control extremely important in biomaterial processing

e Large variations can exist in melt temp profile in
extrusion/injection moulding — undetected by conventional
instrumentation

e Temp-sensitive fluorescent probe used to investigate in-barrel
temp profile

e Confocal optics used to monitor temperature at different depths
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Bur et. Al, Polym Eng. Sci 2004, 44, 2148-2157




Monitoring and Control of Thermal Stability

» Interested in determining process settings to optimize rate with

thermal stability
» Using thermocouple mesh to model effect of process settings
and material properties on thermal profile
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Monitoring and Control of Thermal Stability

* Interested in determining process settings to optimize rate with
thermal stability

e Using thermocouple mesh to model effect of process settings
and material properties on thermal profile
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Applications

« Identifying industrially feasible solutions to process
optimization in high-value areas
* In manufacture of nanocomposites
* In extrusion processing of medical devices with
stringent quality specifications
* In processing of degradation-prone biomaterials

» Can be developed to apply to other processes

m.mcafee@qub.ac.uk
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