$2 M SHARRP Grant Takes Aim at Home Health Care Hazards

With the potential of spreading HIV or hepatitis, needlestick injuries can no longer be shrugged off by health care workers as “part of the job.” And with the number of Massachusetts home health care workers expected to nearly double between 2000 and 2008, School of Health and Environment researchers believe the time is now to get a handle on their job-related risks from such injuries.

The National Institute of Occupational Safety and Health (NIOSH) agreed, and has awarded a team led by Prof. Margaret Quinn $2 million over four years to investigate, and help solve, the problem.

Named Project SHARRP—Safe Homecare and Risk Reduction for Providers, the grant was one of four awarded nationwide. The research team and partners gathered recently in Cumnock Hall for a working session and project kickoff. The funds will be used to research the number of injuries, identify risk factors, and develop tracking and analyzing systems—all to develop prevention methods to improve the way home health care is conducted.

New Center Stirs the American Melting Pot

In the spring of 2005, UMass Lowell will launch the Jack and Stella Kerouac Center for American Studies. A recent gift of $50,000 by Kerouac Estate executive John Sampas is helping to fund its creation.

Heading the Kerouac Center will be English Prof. and Director of American Studies Hilary Holladay, who sees it as having a campus-wide impact.

“The Jack and Stella Kerouac Center for American Studies will strengthen the interdisciplinary ties between the Departments of English, History, Philosophy, Cultural Studies, RESD, Art and Music,” says Holladay, who adds that there are opportunities for other departments to become involved as well.

The Center will sponsor a variety of projects and events in the humanities and social sciences. It will also serve as the home for the Kerouac Writer-in-Residence program, the

Dr. Hogan Delivers Upbeat Campus Address

Chancellor William T. Hogan quickly set the tone for his recent address to the campus by declaring at the outset, “It’s good to see you; and there are no problems.”

The upbeat talk at Cumnock Hall, which mirrored earlier remarks at O’Leary, covered a range of issues affecting the campus by declaring at the outset, “It’s good to see you; and there are no problems.”

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many tasks as possible in two and one-half minutes.

The robots had to be programmed to function independently, with no remote control, and to complete as many t
The Hispanic Engineers Club Visits Philadelphia

T he Philly Cheese Steak isn’t the only reason to visit the city of Brotherly Love. For more than 1,100 engineering undergraduate and graduate students, the Eastern Technical Career Conference 2004 was another good reason.

Thirty of the 46 members of the UMass Lowell chapter of the Society of Hispanic Professional Engineers (SHPE) staffed the Engineering Fair Booth at the recent Eastern Technical Career Conference where they staffed the Engineering Fair Booth. The pair advise the Society of Hispanic Development are caught in action at the recent Eastern Technical Career Conference where the first time ever. They may not have gone home with all the prizes, but what they did go home with was a sense of accomplishment. The students are now equipped with the knowledge of what to improve for next year and a desire to work harder in preparation for the next conference.

At the conference, SHPE entered some competitions such as the College Knowledge Bowl for the first time ever. They may not have gone home with all the prizes, but what they did go home with was a sense of accomplishment. The students are now equipped with the knowledge of what to improve for next year and a desire to work harder in preparation for the next conference.

SHPE also sponsored a Graduate School Fair booth in collaboration with 11 other universities. The informative booth turned many heads. According to the Valdes team, SHPE was inundated with questions pertaining to the engineering programs at UMass Lowell. Students were able to attend many seminars, workshops and company tours offered over the weekend. The SHPE is a club that strives to promote educational opportunities for professionals, college and K-12 students.

Just like a science-fiction postal service, the nanospheres self-assemble around the chosen drug, wrapping up any kind of molecule—large or small, toxic or non-toxic, hydrophilic (water loving) or hydrophobic—in safe, tiny packages for speedy delivery.

Says Watterson, “So far, we haven’t found any substance that we are unable to encapsulate.” Studies have been carried out for anti-cancer, anti-inflammatory and anti-microbial drugs and for insulin delivery and nutraceuticals.

He explains that the molecular structure is a unique mix of hydrophobic (water hating) and hydrophilic (water loving) sections that first cause the long polymer chains to form and then cause them to curl up into very small nanospheres. When the second process occurs in a drug solution, the nanospheres enclose the drug molecules.

The structure is designed to have a benign surface that will not cause immune reactions in living systems. The nanospheres are also non-toxic and biodegradable.

Watterson Wraps It All Up—In Nanospheres

T hink of it as a sort of molecular postal service. You start with a collection of awkward objects—perhaps one is knobby, one is poisonous and one is large.

You must wrap these to get them where they need to go. And, your postal system should work faster, more safely and more economically than any that has gone before.

Art Watterson is the postmaster, giving his team the momentous responsibility of the Institute for Nano Science and Engineering Technologies, and his research team have designed a polymer system for encapsulating and delivering drugs or other substances in nanospheres.

This elegant approach is a form of “green chemistry,” says Watterson, in that it uses naturally occurring enzymes to create the polymer and mild chemical methods to complete the self-assembly, so the production process and the resulting product are benign.

Early test results showed that the encapsulated drugs work remarkably faster and with greater potency than if they were administered alone. The nanospheres can be absorbed through the skin or ingested, and can cross the blood/brain barrier. They can even carry a substance into the cell that itself would not penetrate the cell walls.

The nanospheres have been used in research on cancer treatment. Prof. Thomas Shea, biological sciences, directs a project funded by the National Institutes of Health to study the slowing down or stopping the growth of neuroblastomas, the most common type of solid-tumor cancer in infants.

The results are dramatic, slowing the growth of tumors in mice by as much as 300 percent.

Like all scientists, the research team members have new plans to improve their invention.

“Right now, the drug delivery is broad spectrum,” says Watterson. “We can encapsulate any size molecule and it can go anywhere it is needed, like aspirin. Our next challenge is to develop a mechanism of targeted drug delivery, such as attaching a peptide (protein fragment) to the nanospheres that responds only to cancer cells.”

Ahal! Special delivery.

Panel Presents Sharp Tools for Smart Growth

Lazonick Surveys the Boom and Bust of New Economy

Prof. Emeritus Arthur Watterson

Prof. Eunsang Yoon, left, welcomed, from left, Joe Sheridan, Bill Sovie, Tom Pinkerski and Bill Perkins to a recent undergraduate seminar. The four, experts in green construction practices, described tools for “smart growth” including everything from the preservation of open space to concrete siding for homes. Here, they demonstrate the advantages of an insulation fabricated from recycled newspaper over that of conventional fiberglass material.

Prof. Bill Lazonick of the Department of Regional Economic and Social Development, presented the New Economy Business Model at a recent Fall Seminar. Lazonick hypothesizes that market practices of the 1990s have resulted in lasting, structural changes in employment trends in the information and computer technology sector. He was presented by the Center for Industrial Competitiveness and REED.
More Than $1 Million Available to Encourage Endowment Giving

A state program designed to encourage private fundraising by public colleges and universities could land UMass Lowell up to $1.35 million for its endowment this fiscal year. The state Higher Education Endowment Incentive Program (PHEEP) will match 50 percent of any gift to the UMass Lowell endowment, funds that can be designated for academic purposes, including scholarships, facility construction or named faculty chairs.

A healthy endowment ensures the strength, stability and independence of a university over time. Endowment funds are crucial in insulating UMass Lowell against downturns in the business cycle, or sudden changes in government funding.

With an endowed fund, the principle is invested and only a portion of the investment earnings is spent for a specified project. The rest of the earnings are channeled back to the fund so that the endowment grows over time. In this way, the endowment becomes a perpetual source of funding for whatever a donor wishes to achieve.

Under PHEEP, for example, a recent gift of $670,000 from alumnus Cherry E. Cook ’05 was leveraged to $1 million to fund student scholarships. Some of the investment earnings from this endowment fund will be spent each year for scholarships and some will be returned to the fund.

This is a limited time offer. Matching money is guaranteed only until Jan. 15, 2005, although the program may be available for up to five years.

To receive this match, a donor must pledge at least $50,000 to a new endowment fund. The minimum gift for an existing fund is $10,000. At this time, the state has agreed to match future pledges for the program, as long as those pledges are paid within five years, unless the president makes a specific exception in writing to the campus.

The state has made $9 million available this year for the program across the UMass system. The Lowell portion is 15 percent of that total, or $1.35 million. All pledges made before Jan. 15 are guaranteed to receive a match if the pledge is paid before the end of the fiscal year, June 30. Pledges received after Jan. 15 may be matched, depending on the amount left in the entire UMass System’s pool of money.

For more information, contact Debra Marino, Office of University Advancement at debra_marino@uml.edu or 978-934-4821.

Plastics Rule the Future at Tripathy Symposium

This may be the century of plastics—polymers, that is. Polymer research is pushing forward in remarkable directions. Polymers are being designed and refined that capture light and convert it to power, convey optical information, self-assemble in imitation of natural processes, form nanofibers or act as pharmaceuticals.

And the latest advances in polymer materials science are showcased each year at the Sukant Tripathy Memorial Symposium. Tripathy’s wide-ranging interests and generosity in interdisciplinary research are exemplified by the participants.

Photovoltaic polymer research—capturing light on plastic—was the subject of several presentations, including those of Niyazi Sariciftci of the Johannes Kepler University in Linz, Austria; Dong Young Kim, from the Korea Institute of Science and Technology in Seoul; and Daniel McLaughlin of Konarka Technologies, Inc. in Lowell.

Konarka recently was named one of the 21 companies poised for growth in the 21st century by InnovationWORLD, a leading source of business intelligence on growth-stage companies. Konarka’s technology is based on intellectual property developed at the University by Tripathy, and UML holds a position in equity and royalties.

Treating obesity with polymer pharmaceuticals was discussed by Randy Holmes-Farley of Genzyme Corp. The polymeric drugs, now in human clinical trials, act to bind or encapsulate fats in digestion, reducing their absorption. Similar drugs are currently approved for treating elevated phosphate in kidney disease and high cholesterol.

UML’s Prof. John Warner, director of the Green Chemistry Program, spoke about natural process systems to construct new materials. This basic shift in chemistry shows promise in reducing toxicological and environmental impact.

All the Symposium papers will be published in a special issue of the Journal of Macromolecular Science.

Rob Silvers ’91 Creates Red Sox Logo for Sports Illustrated Cover

When Sports Illustrated wanted a cover design for its recent Sportsmen of the Year issue, it turned to Rob Silvers ’91 for one of his Photomosaics renditions.

The Boston Red Sox were SI’s Sportsmen of 2004, and Silvers designed a Red Sox logo using more than 2,000 images of present and past team members and fans, and photos made during the World Series games.

Photomosaics are images or portraits formed from a series of smaller images. All the images blend to form a larger one—in this case, the Red Sox logo.

It usually takes about three weeks to complete a project of this size but, because of the magazine’s deadline, Silvers finished this one in only two.

He says it would have been tough to pull all the necessary pictures together on such short notice but “SI was able to get me over 3,000 photos quickly. The image has over 2,000 photos in it, but I worked from over 3,000 photographs and picked the best ones. No images are repeated.”

SI printed 3.5 million copies, he says.

Silvers didn’t deal with anyone in the Red Sox organization in connection with the project although, he says, “their management company called to say the team wanted to make posters of it.”

He, himself, is thinking of doing jigsaw puzzles and posters of the image but those plans are still incomplete.

Silvers’ company, Runaway Technology, has produced images for clients ranging from Master Card to the Walt Disney Co. His images have appeared on the covers of LIFE, Newsweek and a number of other publications.

Controlling the Climate: Weathering Diverse Attitudes in the Classroom

▲ Konarka Technologies was represented at the Tripathy Symposium by Daniel McLaughlin, left, executive vice president and chief marketing officer, and Russell Gaudiana, vice president of research and development. Konarka is a world leader in the technology and applications of low-cost, flexible photovoltaics.

▲ The Diversity and Pluralism Council had no trouble stirring up conversation with its dinner at a session on “classroom climate.” Participants exchanged tips for managing open discussion about stereotypes and attitudes, while respecting all students. From left, the Council’s co-chairs, Co-Dean of Students Larry Siegel and Community Health and Sustainability Asst. Prof. Nicole Champagne, joined the three session leaders: student Julissa Antique, a senior psychology/political science major; Noel Cartwright, counseling director; and Assc. Prof. Daniel Egan of Sociology.

December 15, 2004
delivered and to attract practitioners to the field. UMass Lowell will partner with industry, labor and state government to reach home health care workers throughout eastern and central Massachusetts.

"By forming diverse partnerships within our community and by combining scientific research with education, we’ll be able to help the growing population of home health care providers lead safer, healthier and more productive lives," says Quinn.

Five leading home healthcare agencies and labor unions will collaborate on the project: VNA Care Network, which operates within 200 communities in the region; the UMass Memorial Home Health and Hospice in Worcester; Winchester Home Care; the Massachusetts Nurses Association (MNA); and the Service Employees International Union (SEIU) Local 2020.

The research team includes Prof. Stephanie Chalupka of the Department of Work Environment and Letitia Davis, director of the Occupational Health Surveillance Program at the Massachusetts Department of Public Health (DPH).

"This puts together two projects within our community and by taking advantage of a model vocational school salon; promoting alternative products with a Vietnamese nail salon workers; and raising awareness about pesticide use of a model vocational school salon; promoting alternative products with a Vietnamese nail salon workers; and raising awareness about pesticide use.

"People in occupational health are trying to understand the nature of our work and what it is we actually do," says Chalupka, referring to home health nurses. "The way we work is different than anybody else you’ve ever studied, I’m sure." She points out that 25,000 home visits are made each day in Massachusetts.

"At UMass Lowell, we want to help the economy thrive, not just by adding jobs, but by making sure they are jobs people want to have," says Provost John Wooding. "That’s what a sustainable economic future is all about.” —RC

Toxics Use Reduction Institute Awards Five Grants to Promote Chemical Safety

The Massachusetts Toxics Use Reduction Institute (TURI) awarded five $10,000 Toxics Use Reduction Networking (TURN) grants to community organizations across the commonwealth to reduce chemical use in salons, schools and neighborhoods.

Recipients are the Massachusetts Coalition for Occupational Safety and Health, New Ecology, Inc., Town of Westminster Water Dept., Lower Pioneer Valley Education Collaborative, and Manomet Center for Conservation Science.

"We see a tremendous opportunity to promote safer alternatives for pest-free lawns, clean schools and healthy salons," said Eileen Gunn, TURI’s community program manager.

To receive the grant, participants must form a partnership with other organizations to communicate safer and effective solutions to citizens, cities and towns.

The winning projects involve advancing the use of green cleaners in Boston schools; promoting healthy cosmetology through the development of a model vocational school salon; promoting alternative products with Vietnamese nail salon workers; and raising awareness about pesticide use and alternatives.

TURI provides the resources and tools to help Massachusetts companies and communities make the commonwealth a safer place to live and work. For more information about the TURN Grant, contact Eileen Gunn at 978-934-4340.

Nutrition Program Helps Wang After-School Kids Prepare for Thanksgiving

A group of 12-year-olds in a Community Teamwork, Inc. after-school program recently cooked appetizers and learned napkin folding and table setting in preparation for Thanksgiving dinner from adjunct faculty member Margaret Martin.

Martin and others from the University’s Center for Health and Disease Research have volunteered time to run the 10-week, once-a-week program in which students learn nutrition basics and cooking skills. The program has received much support from the community and the University. Thomas Shana-han, owner of the Owl Diner, has donated all food for the program and has given the students cooking lessons. In previous classes, Asst. Prof. Thomas Wilson taught a class on reading nutrition labels by using specimen boxes. Prof. Robert Nicolosi led students on a field trip to the DeMoulas Supermarket in Tewksbury where they were allowed to sample some food items. Before Thanksgiving, the students each created a centerpiece for their Thanksgiving tables.

Apreso, but no Espresso, Offered at Technology Lunch

The Teaching with Technology Task Force recently hosted a Technology Lunch to demonstrate a new system called Apreso Classroom. Apreso integrates video, computer presentation and audio into an interactive Web archive. Joe Mendonca, media streaming specialist from H.B. Communications, demonstrated the potential of the system and fielded questions from a full house of UML faculty and staff, including both day faculty and on-line adjuncts. Discussion centered on use of the digital archives as a review mechanism for students and as an on-line supplement to text materials.
Robotic Revolution Invades Campus

The Robotic Revolution tournament was hosted by UML’s engineering K-12 outreach program, directed by Doug Prime, assisted by Bill Malico. Adult mentors for the Bishop Guertin team in Nashua, N.H., provided support with technical advice and 20 volunteers to staff the event.

Continued from Page 1

New Center Stirs the American Melting Pot

always enthusiastic about nurturing the humanities in Lowell.”

For the Center’s inaugural event, plans are underway to host the New England Poetry Conference.

“The conference will feature panels on Poetry and War, Poetry and Race, and Poetry and the Market-place,” says Holladay. “We also have some outstanding poets on campus giving readings during this event, which will happen in early April.”

The American Studies program began in the early 1970s, under the direction of Cliff Lewis, professor emeritus of English. Lewis shaped and guided the program through two decades before handing the reigns to English Prof. Melissa Pennell and subsequently to Holladay.

Continued from Page 1

Dr. Hogan Delivers Upbeat Campus Address

He said that the University’s overall budget, even if there is an increase, likely will not cover hikes in other areas, such as health care, salaries and overall inflation. However, he expressed confidence that any shortfall could be filled by modest student fee increases and cash reserves.

Dr. Hogan also was “very optimistic” that the Senate Task Force on Public Higher Education, chaired by State Sen. Steven Panagiotakos of Lowell, next year will present a compelling argument for the increased funding and capital plan necessary to position Massachusetts institutions to compete in a global economy.

“We are quite ready to go from being quite good to being distinguished.”

Continued from Page 1

Other highlights of the talk included:

Physical Plant: The administration is working to gain approval to swap Wannalancit Mills for the former Saint Joseph’s Hospital building, a proposed future home for the School of Health and Environment and other University offices. Olney Hall laboratories also are being renovated, with the help of nanotechnology grant funds.

Parking: Construction of a new garage adjacent to LeLacheur Park that will add 700 parking spaces is expected to begin this spring and be completed the following year. Another facility behind Costello Gym for 700 to 800 vehicles also is planned.

Research: Funds from several sources, including more than $20 million from the state and $4 million from the National Science Foundation, are making it possible to build a nanotechnology manufacturing center and undertake research in this “accelerating” field. The University will continue to build partnerships with industry for intellectual property development and grow spin-off companies, as was the case with Konarka, in an effort to raise more revenues for the campus.

Transformation: The University is in the process of a redesign that will improve the delivery of services to students and the overall quality of the learning experience. A new television advertising campaign launched Thanksgiving week also is expected to raise campus visibility.

Dr. Hogan thanked the faculty and staff for “hanging in there” over the last few years, despite limited resources.

“We are quite ready to go from being quite good to being distinguished,” he said.

Continued from Page 1

Physics Seminar Features Nobel Laureate

Sheldon Glashow, fourth from left, spoke at the opening seminar of the Physics Department series, welcomed by, from left, Physics Pros. Walter Schier, James Egan, chair, Albert Altman, Konstat Sebastian and David Pullen. Glashow is a theoretical physicist who, with two others, received the Nobel Prize for formulating the electroweak theory, which explains the unity of electromagnetism and the weak force. At present, he is the Metcalf Professor of Physics at Harvard University. Glashow discussed the question, “Immanuel Kant versus the Princes of Serendip: Does science evolve through blind chance or intelligent design?”

Continued from Page 1

Currently, there are about 20 majors enrolled in the American Studies program, which invites students to examine the development of American society and its culture. In Holladay’s opinion, the program has always attracted a unique brand of student.

“American Studies appeals to high-achieving, imaginative students who want to explore the art, music, literature, politics and experiences which are uniquely American,” she says.

Plans for the American Studies program include the possibility of developing a master’s program.

—KL

—SS

A Volunteer judges from UML show off their Robotic Revolution t-shirts: Linda Lash, left, master’s candidate in education, and Augustine Anuvah, senior in chemical engineering. Vicky Dalis, in Publications, designed the shirt.

A Young inventors from Hamilton practice their moves. The FIRST Lego League challenge was to design and program robots that complete tasks to assist the disabled. The Hamilton team took first place overall.

A Sheldon Glashow, fourth from left, spoke at the opening seminar of the Physics Department series, welcomed by, from left, Physics Pros. Walter Schier, James Egan, chair, Albert Altman, Konstat Sebastian and David Pullen. Glashow is a theoretical physicist who, with two others, received the Nobel Prize for formulating the electroweak theory, which explains the unity of electromagnetism and the weak force. At present, he is the Metcalf Professor of Physics at Harvard University. Glashow discussed the question, “Immanuel Kant versus the Princes of Serendip: Does science evolve through blind chance or intelligent design?”
Roehr and Martin Hatch a Plan to Connect Their Disciplines

Normally students with majors on UML North don’t see much of those on UML South, and vice versa. In an effort to integrate the two, Asst. Profs. Karen Roehr of the Art Department and Fred Martin of Computer Science teamed up last month to bring together students in their two disciplines.

Students in Martin’s Robotics I course used Legos to build autonomous robots that were programmed to pick up plastic eggs for the annual Egg Hunt Competition. The objective was to bring “good” eggs back to their nest and to avoid selecting “bad” eggs. Roehr’s Graphic Design II class designed marketing materials such as posters, robot logos, brochures and t-shirts to promote the event.

Martin and Roehr came up with the idea after attending a campus meeting promoting cross-disciplinary studies. The art students were assigned to a robotics team, previewed the robot designs to get a clearer idea of what the event was all about, and then presented their promotional ideas to the robot designers. In this way, they worked very much like a professional graphic design team would work with clients.

“Different talents are needed to achieve a common goal. This project enabled students to see how they will need to work together in their respective fields,” says Martin. It was a great experience for both groups,” adds Roehr. “The students from the two disciplines saw so many similar elements in terms of the creativity required in each exercise. They were so impressed with each other.”

The resulting artwork was on display when the robotic competition was held in November. Art and computer science students packed a classroom in Ball Hall to cheer on their respective teams. The collaboration was only the initial step for these two faculty members. Next year, they plan to repeat the project with hopes of making it even more collaborative.

Get the Lead Out, Says Shina

Mechanical Engineering Prof. Sammy Shina is a man with a mission - to help companies in the Massachusetts Lead Free Consortium convert their operations to lead-free production.

Shina’s article about the project was recently published in an Electronics Manufacturing issue of the Surface Mount Technology magazine.

The Consortium pools the knowledge, resources and expertise of local companies to facilitate conversion, working on specific research projects. For the research, member companies such as Analog Devices, M/A-COM, Skyworks and Texas Instruments supplied components, while equipment and materials were provided by BTU, Air Products and others. Boards were fabricated and assembled by Sanmina-SCI and Solecotron and in Schneider Electric in the initial phases, and Dynamic Details Inc. and Benchmark Electronics in later phases. Also joining the consortium were General Dynamics, Raytheon, Teradyne and Textron. Most of the testing was done at MA/COM and on the UML campus.

The Consortium has achieved the first goal of the project by manufacturing lead-free Printed Wiring Boards with zero visual defects and with performance characteristics comparable to that of the leaded version.

The Consortium was created through funding from the Massachusetts Toxics Use Reduction Institute (TURI) in 1999. Research results and information can be found on TURI’s website: www.turi.org. More than 25 papers have been published or presented.
General Consul of India Welcomed as UMass Lowell Hosts Annual AAINA Banquet

General Consul of India Pramathesh Rath was an honored guest at the 3rd Annual Banquet of the Association of Americans of Indian origin in the New England Area (AAINA) hosted by UMass Lowell in November. Along with local political leaders and business entrepreneurs, over 200 Indian Americans (the women draped in their traditional saris) were on hand to celebrate their Indian ethnicity and their American citizenship.

“There is no other country in the world like the United States,” said the General Consul. “There is no other country that recognizes talent the way the U.S. does. That is what you owe this country.”

The Consul thanked the AAINA for inviting him and spoke about the positive changes in India in the last decade, the growing ties between India and the U.S. and the professional and cultural success the Indian community has had in the United States.

“You have competed with the best and you have succeeded,” said Rath.

Leading the night’s festivities was Chandrika Sharma, coordinator of Disability Services for UMass Lowell. Indian cuisine was served as honored guests got up to speak about the role of Indian Americans in the United States. Following the dinner was a traditional Bhagwa Gaida, a dance drama based on the holy teachings of India.

“We at UMass Lowell are honored to host the annual banquet of AAINA,” said Sharma. “We are an institution deeply engaged in the larger community: its industries, its schools, its hospitals, its culture and its democratic process. Our ambition is to demonstrate how a public university, providing high quality, affordable student programs, can effectively assist sustainable regional development in a global economy.”

Massachusetts State Sen. Sue Tucker was also in attendance to express her appreciation and respect for the positive role the Indian Americans in her constituency have played throughout the years.

“I want to thank you for your many contributions to the community, to the state and to the country,” said Tucker. “Through diversity America has realized greatness. Indian Americans are a vital part of this country and it’s important that we recognize your strength.”

The theme of the night centered on what more Indian Americans can do as citizens. Speakers urged audience members to become active and educated members of the democratic process.

“Every ethnic group has an opportunity to make a mark in this country but it must begin with you,” said New Hampshire State Sen. Lou Delsandra. “The power of the vote is one of the things I want to communicate to you tonight. Great hope is only as strong as you are. Please accept my thanks for making America a better place.”

Author, doctor and president of the AAINA Sudarshan Chatterjee urged attendees to get involved with grassroots politics, to help build institutions such as universities and hospitals, to inspire all Americans of Indian heritage to be central players in their adopted country.

“Have we participated fully in our community, in the political process?” asked Chatterjee. “Do we get out in large numbers to vote? We owe something to this great country and we must spread the importance of civic responsibility.”

Reflecting this call to action were UMass Lowell student volunteers for the India Development and Relief Fund. A completely volunteer run organization that has served the poor and disadvantaged of India for over 15 years, the IDRF sponsored the hall for the banquet and provided the student volunteers who coordinated and staffed what was a proud and joyful experience.

It’s Not Easy Being Green—but That’s Mark Lukitsch’s Goal

Mark Lukitsch has a formidable goal — despite rising fuel prices, his job is to see that the University’s energy costs remain level by reducing its consumption while at the same time maintaining the level of heat, lighting and other utility services required by the academic community.

Lukitsch, who became Energy and Utilities Manager in the Facilities office on Aug. 1, says one key to accomplishing this goal is to make use of more energy efficient systems. For example, he says, in certain cases, the University could install new lighting equipment that would use 20 to 30 percent less energy while providing even greater illumination.

The strategy is to offset the cost of new systems with the savings gained through greater efficiency.

The University’s annual utility budget totals about $4.5 million.

“Energy management makes sense for a number of reasons,” Lukitsch says. “It promotes the ‘greening’ of the campus through the reduction of emissions. It keeps costs level by introducing more energy-efficient equipment. It reduces the need for emergency maintenance and leaves more time for preventive maintenance. And, if we can pull all this together, the University will be recognized as being environmentally friendly.”

The plan calls for the establishment of an Energy Steering Group and the promulgation of an Energy Policy.

The steering group, made up of decision-makers from all areas of the University, will be responsible for ensuring that all departments and organizations adhere to the established Energy Management Policy.

The policy, issued by the office of Diana P. Pireaux-Brune, vice chancellor for Facilities, deals with a number of actions that can be implemented by all members of the University community to conserve energy. It includes initiatives such as setting the proper temperature in heating and cooling seasons, turning off lights in unoccupied areas, and shutting down computers not in use.

The foreword to the policy states: “With conscientious energy usage, we can save thousands of dollars in annual utility costs, and continually improve the University’s image as a good custodian of the environment. Each person must do his or her part to consume energy wisely.”

As energy manager, Lukitsch’s responsibilities will include, among other things, setting achievable goals, training and enlisting faculty and staff support, and implementing the use of energy-efficient goods and products.
Council Honors Teaching and Advising Awardees

The Council on Teaching, Learning, and Research as Scholarship held a reception recently to honor the recipients of the 2004 Departmental Teaching and Outstanding Advisor Awards. Mary Beaudry, director of the Faculty Teaching Center, organized the event.

Welcomed by Provost John Wooding, the honored faculty and staff were introduced by their college dean. Each received a certificate and a cash award.

Names and photos of all the awardees are posted on the Faculty Teaching Center Web site at http://www.uml.edu/centers/FTC/.

Bousquet Blends Reality with Cyberspace

At first, I was underwhelmed. Glen Bousquet, systems analyst for the Mechanical Engineering Department, was talking me through running a lab experiment from my computer. Dutifully, I pushed buttons and watched instrument readings change and a bar deflect under pressure. The graphics were a little grainy, I thought.

Finally, the light dawned—this was not a simulation. It was happening under my control. Over in a Kitson Hall lab, a real instrument showed readings as I put pressure on a metal bar by pressing buttons on my keyboard.

“This breaks down the wall of huge lab classes,” said Bousquet. “Now each student can actually perform the experiment and calculate the results.” Bousquet has equipped the lab with multiple camera drops to expand the number of experiments, which will be incorporated into next semester’s Mechanics of Materials course.

Asst. Prof. Glenn Sundberg, mechanical engineering technology, and Bousquet are developing a proposal to offer the real-time cyber experiments to community colleges.

Western Concept of Ego Draws on Indian Philosophy

Author Ashmita Khasnabish, left, of the English Department, recently discussed her book, *Jouissance as Ananda: Indian Philosophy, Feminist Theory and Literature* at O’Leary Library. Julie Nash, right, organized the talk on Khasnabish’s book, which seeks to resolve the often-problematic Western concept of the ego by proposing a cross-cultural theory of consciousness that draws on Indian philosophy.

Activist Explains the Struggle of Colombian Life

Speaking through an interpreter, Colombian Labor Union Activist Miguel Fernandez recently spoke before a packed classroom about Plan Colombia and its impact on the lives of the country’s working poor. Fernandez was presented by the Labor Extension Program and the Lowell Center for Sustainable Products.
Calendar of Events

Continued from Back Page

Saturday, Mar. 5
Weekend Snapshots, on-campus sessions give potential undergraduate students an overview of the University and campus life, 9:30 a.m. to 12:30 p.m. For additional information and to register, visit www.uml.edu/admissions/weekendsnapshots.

Wednesday, Mar. 9
Exhibit Reception, “Spirit Level III International Photography Workshop,” students from the U.S., Finland and Switzerland participate in a photography workshop, curated by Prof. Arno Minkkinen, exhibit runs through April 6, 2 to 4 p.m., Dugan Gallery. For more information, call (978) 934-3491.

Wednesday, Apr. 13
Open Meeting Hours, meet with Chancellor William T. Hogan, staff: 2 – 3 p.m., students: 3 – 4 p.m., faculty: 4 – 5 p.m., Trustees Room, Cumnock Hall. For information, call the Chancellor’s Office (978) 934-2201.

Wednesday, Apr. 20
Exhibit Reception, “The Cubic Series,” sculpture by Eugenie Lewalski Berg, artist talk at 3 p.m., exhibit runs through May 13, 3 to 5 p.m., O’Leary 222. For more information, call (978) 934-3491.

Wednesday, Apr. 27
Exhibit Reception, “The BIG Show,” 15th annual juried exhibit of student artwork, awards presentation at 3 p.m., exhibit runs through May 11, 2 to 4 p.m., Dugan Gallery. For more information, call (978) 934-3491.

Saturday, May 14
Exhibit Reception, Spring BFA Exhibit, exhibit runs through May 22, 2 to 5 p.m., EVOS Arts Institute, 98 Middle St., Lowell. For more information, call (978) 934-3491.

Hira Covers Highs and Lows of Overseas Outsourcing

Ron Hira, Assistant Professor of Public Policy at the Rochester Institute of Technology, was recently on campus to explain what we know—or more importantly what we don’t know—about the overseas outsourcing of technology jobs. Hira was presented by the Center for Industrial Competitiveness. Sponsors included the College of Engineering, the departments of Electrical and Computing Engineering, Computer Science, Regional Economic and Social Development, the Center for Electric Car and Energy Conversion, and the Center for Sustainable Energy.

Obituaries

Prof. Earl R. Laste, An Electrical Engineering Professor for 33 Years

P
od. Earl R. Laste, a member of the Electrical Engineering Department faculty for 33 years and coach of the University ski team, died Nov. 27.

Prior to joining the Lowell faculty, Prof. Laste taught at Worcester Polytechnic Institute (WPI), the U.S. Naval Academy and Northeastern University.

A 1957 graduate of Northeastern, he went on to earn a master’s in electrical engineering from Northeastern and a doctorate at WPI.

A memorial celebration will be held at a later date.

Lahiri Presents on Occupational Safety and Health

Prof. Supriya Lahiri of the Economics Department recently presented a seminar entitled “Estimation of Net-Costs for the Prevention of Occupational Morbidity.”

For the past few years she has done extensive collaborative research with members of the Work Environment department and the World Health Organization on economic analysis of occupational safety and health issues for both developed and developing countries.

Note Worthy

Assoc. Prof. Paula Telesco of the Music Department has been appointed to the editorial board of the Journal of Music Theory Pedagogy. This professional journal has published several of her articles, which promote new ways of thinking about and teaching Music Theory and Aural Skills at the college level.

Prof. John Ogasapian’s latest book, Music of the Colonial and Revolutionary Era, has been published by Greenwood Press and is available, as John says, “in all the usual places, e.g. Amazon.com, etc.”

In its description of the book, Amazon says, “More of a cultural examination than a music theory book, this work provides vastly informative narrative chapters on early American music and its role in colonial and Revolutionary culture.”

Part of this new culture, according to this synopsis, “was the first American music publishers, entrepreneurs, and instrument makers forging musical communities from New England to New Spain.”

Carole LeBlanc, director of TURI’s Surface Solutions Laboratory, addressed a chemistry class at Brandeis University earlier this month on the topic “Green Chemistry and the Environment: One Researcher’s Experience.”

Promotions

Linda M. Concino, proposal development manager in Administration and Finance, from senior grants and contracts administrator in the Research Administration.

Appointments

Deborah Chaulk, research nurse in Nursing.

Mike Prolosch, labor extension coordinator in the Labor Extension Program.

Susan Winning, professional technician, labor extension coordinator in the Labor Extension Program.

Promotions and Appointments
Calendar of Events

Saturday, Dec. 18
Exhibit Reception, “Fall BFA Exhibit,” exhibit runs through Dec. 22, 2 to 5 p.m., EVOS Arts Institute, 98 Middle St., Lowell. For more information, call (978) 934-3491.

Tuesday, Dec. 28
Women’s Basketball, UML/MC Tournament 5:30 p.m. Costello Gym. For more information, call (978) 934-HAWK Women’s Basketball, UML/MC Tournament 7:30 p.m. Costello Gym. For more information, call (978) 934-HAWK.

Wednesday, Dec. 29
Women’s Basketball, UML/MC Tournament, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Women’s Basketball, UML/MC Tournament 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Thursday, Dec. 30
Hockey, vs. Niagara University, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Thursday, Jan. 6
Women’s Basketball, vs. St. Michael’s College, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. St. Michael’s College, 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Friday, Jan. 7
Hockey, vs. UMass Amherst, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Saturday, Jan. 8
Hockey, vs. Northeastern University, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Tuesday, Jan. 11
Women’s Basketball, vs. LeMoyne College, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. LeMoyne College, 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Friday, Jan. 14
Hockey, vs. Merrimack College, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Saturday, Jan. 15
Weekend Snapshots, each on-campus session gives potential undergraduate students an overview of the University and campus life, 9:30 a.m. to 12:30 p.m. For additional information and to register, visit www.uml.edu/admissions/weekendsnapshots. Women’s Basketball, vs. College of St. Rose, 2 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. College of St. Rose, 4 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Wednesday, Jan. 19-20
Graduate Registration Night, graduate course registration, faculty advising and program information, 3 to 7 p.m., Durgin Hall. For more information, contact (978) 934-3626 or jmajaran@cs.uml.edu.

Thursday, Jan. 20
Women’s Basketball, vs. Southern Connecticut State University, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. Southern Connecticut State University, 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Tuesday, Jan. 25
Women’s Basketball, vs. St. Anselm College, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. St. Anselm College, 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Wednesday, Jan. 26
Seminar, Plastics Engineering Seminar Series, “Polymer Nanocomposites: Interface Control,” by Prof. Linda Schader, Materials Science and Engineering Research Center, Rensselaer Polytechnic Institute, Troy, N.Y., 4:30 to 5:30 p.m., Ball 214. For more information, call Plastics Engineering (978) 934-3420.

Friday, Jan. 28
Hockey, vs. University of New Hampshire, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Wednesday, Feb. 2
Exhibit Reception, “Mixed Media Installation,” by Meagan Shein, Artist Talk at 3 p.m., exhibit runs through Feb. 23, 3 to 5 p.m., University Gallery, McGauvran Student Center. For more information, call (978) 934-3491. Women’s Basketball, vs. Bryant College, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. Bryant College, 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Saturday, Feb. 5
Weekend Snapshots, each on-campus session gives potential undergraduate students an overview of the University and campus life, 9:30 a.m. to 12:30 p.m. For additional information and to register, visit www.uml.edu/admissions/weekendsnapshots. Hockey, vs. Providence College, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Wednesday, Feb. 9
Exhibit Reception, “Papermaking and BookArts,” curated by Laura Mayotte, exhibit runs through March 2, 2 to 4 p.m., Dugan Gallery. For more information, call (978) 934-3491.

Open Meeting Hours, meet with Chancellor William T. Hogan, staff: 2 – 3 p.m., students: 3 – 4 p.m., faculty: 4 – 5 p.m., Trustees Room, Cumnock Hall. For information, call the Chancellor’s Office (978) 934-2201.

Thursday, Feb. 10
Hockey, vs. Northeastern University, 7 p.m., Tsongas Arena. For more information, call (978) 934-HAWK.

Saturday, Feb. 12
Women’s Basketball, vs. Merrimack College, 2 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. Merrimack College, 4 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Monday, Feb. 21
Women’s Basketball, vs. Franklin Pierce College, 5:30 p.m., Costello Gym. For more information, call (978) 934-HAWK. Men’s Basketball, vs. Franklin Pierce College, 7:30 p.m., Costello Gym. For more information, call (978) 934-HAWK.

Wednesday, Feb. 24
Exhibit Reception, “One Cycle of My Journey,” gelatin silver prints by Abigail Cohen, gallery talk at 3 p.m., exhibit runs through April 6, University Gallery, McGauvran Student Center. For more information, call (978) 934-3491.